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1. Introduction

Climate change has emerged as an increasingly pressing
global concern, fueled by the ongoing increase in
greenhouse gas emissions and the growing ecological
footprints of various nations [1-3]. The heating of the
Earth's atmosphere has exacerbated environmental
deterioration, sparked extreme weather phenomena,
and imposed further strain on ecosystems and human
communities [4, 5]. In particular, CO2 emissions have
soared to unprecedented levels, playing a significant role
in global warming and climate volatility [6-8].
Additionally, the ecological footprint, which serves as a
comprehensive measure of environmental strain, reflects
the degree of human demand on natural resources,
encompassing land utilization, energy use, and waste
production [9-11]. As environmental issues intensify,
particularly in swiftly developing nations, it is crucial to
comprehend the fundamental factors that contribute to
these escalating environmental pressures [11, 12]. One of
the countries experiencing rapid economic growth
alongside rising CO: emissions and an expanding
ecological footprint is Indonesia.

According to Our World in Data [13], as presented in
Figure 1, from 1965 to 2022, Indonesia experienced a
striking upward trend in both CO. emissions and its
ecological footprint, reflecting rapid industrialization,
urbanization, and sustained economic growth. In 1965,
CO: emissions were approximately 24.7 million tons, but
by 2022, they had surged to over 737 million tons,
representing an almost 30-fold increase [13]. Similarly,
the country's ecological footprint more than tripled, rising
from around 129 million global hectares to over 462
million [14]. This parallel growth highlights a strong
correlation ~ between  emissions and  broader
environmental impact. Sharp increases, particularly from
the late 1990s onward, suggest intensified energy use,
deforestation, and industrial expansion. Importantly,
even during periods when CO: emissions slightly
declined, such as during the 1998 financial crisis and the
2020 pandemic, the ecological footprint remained
elevated. This indicates that environmental degradation
is driven not only by emissions but also by land use,
resource consumption, and demographic pressures [15,
16].

Indonesia, as one of the fastest-growing economies in
Southeast Asia, faces mounting environmental
challenges driven by a range of interconnected factors.
Environmental degradation in the country is influenced
by natural disasters, fossil fuel dependence, renewable
energy adoption, economic growth, and capital
formation [17-19]. While natural disasters are frequently
viewed as consequences of climate change, they can also

serve as catalysts for emissions and ecological strain due
to the reconstruction efforts and heightened energy
consumption that follow [17, 20, 21]. Fossil fuels remain
the dominant source of energy worldwide, and their
combustion is a major source of CO; emissions and the
depletion of natural resources, further exacerbating
environmental decline [22-25]. Conversely, renewable
energy is vital for enhancing environmental quality, as it
generates considerably lower emissions than fossil fuels.
Its implementation aids in decreasing pollution levels and
alleviating greenhouse gas concentrations, positioning it
as a more sustainable energy option [24-27]. Moreover,
economic growth and capital formation, although crucial
for progress, can place strain on the environment by
encouraging industrial operations, raising energy usage,
and broadening infrastructure, especially in emerging
economies [12, 25, 28, 29].

As reported by the Center for Research on the
Epidemiology of Disasters (CRED) [30], the frequency of
natural disasters has risen sharply by 46% over the past
three decades, from 303 events in 1990 to 444 in 2019.
This increase has led to severe consequences, including
loss of life, injuries, and economic disruption. Financially,
disaster-related damages have more than doubled,
surging from USD 49.78 million in 1990 to USD 100.94
million in 2019, with an average annual growth of 2.38%
[18, 30]. Previous studies have primarily examined the
social and economic impacts of natural disasters, with
limited focus on environmental effects. However,
disasters can lower overall consumption [31-33],
potentially reducing energy use and CO2 emissions [34].
Lee et al. [35], analyzing data from 123 countries (1990-
2015), found that disasters significantly reduce oil,
renewable, and nuclear energy consumption, linking this
to consumption poverty [36, 37]. Reduced transport
activity may also drive energy savings. Conversely, Doytch
& Klein [38], using data from 80 countries (1961-2011),
reported a positive link between disasters and energy
use, varying by energy type and income level. High-
income countries saw increased renewable use, while
middle- and low-income nations experienced higher
residential and industrial consumption. Similarly, Idroes
et al. [39], using Autoregressive Distributed Lag (ARDL)
methods for Indonesia over the period 1980-2021, found
that natural disasters, non-renewable energy
consumption, and economic growth significantly increase
CO: emissions, while renewable energy usage
contributes to their reduction. The study also identified a
unidirectional causal relationship from natural disasters
and renewable energy to CO. emissions. Furthermore,
Cao et al. [19] employed the Nonlinear Autoregressive
Distributed Lag (NARDL) model to analyze data from
China spanning 2000 to 2020, uncovering a significant

Page | 48 .



Ekonomikalia Journal of Economics, Vol. 3, No. 1, 2025

800,000,000

700,000,000

600,000,000

500,000,000

400,000,000

300,000,000

200,000,000 =

100,000,000

CO2 emissions in Ton

e Total Ecological Footprint in Global hectares
I 1

2005 [
2006
2007
2020 [

||
o <
o o
S o
RN

2001
2002 H
2021
2022

Figure 1. Trends in CO2 emissions and ecological footprint in Indonesia from 1965 to 2022 [13, 14].

long-term nonlinear relationship among carbon
emissions, new energy consumption, and direct
economic losses resulting from natural disasters. Their
findings indicate a U-shaped correlation between
disaster-related losses and carbon emissions: when
losses fall below a certain threshold, emissions are
significantly reduced, whereas smaller-scale losses tend
to increase emissions.

The type of energy utilized significantly influences
environmental quality, often measured through
indicators such as COz emissions and ecological footprint
[40, 41]. Non-renewable energy sources, particularly
fossil fuels like coal, oil, and natural gas, are major
contributors to environmental degradation, leading to
increased CO2 emissions and a larger ecological footprint
due to extraction, processing, and combustion. The
negative environmental impact of non-renewable energy
has been confirmed by several researchers, including
Pata [42], Acaroglu et al. [41] and Idroes et al. [43], who
found that fossil fuel consumption significantly increases
CO2 emissions. Similarly, studies by Pata [42],
Ehigiamusoe et al. [44] and Idroes et al. [43] highlight its
role in expanding the ecological footprint. In contrast,
renewable energy sources such as solar, wind, hydro, and
biomass are generally associated with lower emissions
and a reduced environmental impact. This has been
supported by research from Waheed et al. [45], Pata [42],
Kuldasheva & Salahodjaev [46] and Sahoo et al. [47], who
observed that renewables contribute to lower CO:
emissions, while Pata [42], Ehigiamusoe et al. [44], Idroes
et al. [43], Liu et al. [48] and Sikdar et al. [49] found a
positive effect in reducing the ecological footprint. By
replacing fossil fuels, renewable energy helps decrease
greenhouse gas emissions and alleviates pressure on
natural ecosystems, thereby improving overall

environmental quality. Consequently, the transition to
renewable energy is considered essential for reducing
carbon intensity and promoting sustainable ecological
outcomes [29, 40, 41].

Focusing on Indonesia, Rahman et al. [50] found that air
quality in the country is significantly impacted by
frequent forest fires and volcanic eruptions, both of
which are linked to deforestation and natural disasters.
Their study, covering 30 Indonesian cities from 2002 to
2019, revealed that economic growth is associated with
worsening air quality, rejecting the Environmental
Kuznets Curve (EKC) hypothesis. Furthermore, the study
highlighted the significant contribution of forest fires to
pollution, with a partial Benefit-Cost Analysis (BCA)
estimating that reducing forest fires by 1% could yield
health and agricultural benefits ranging from US$17
million to US$145 million. In another study, Kurniawan et
al. [51] used Dynamic ARDL to analyze data from 1991 to
2020 and found that forest and land fires increase
temperatures, contributing to climate change in
Indonesia. Additionally, Idroes et al. [39] examined the
relationship  between natural disasters, energy
consumption, and CO; emissions in Indonesia from 1980
to 2021. Using ARDL, with robustness checks through
Fully Modified Ordinary Least Squares (FMOLS), Dynamic
Ordinary Least Squares (DOLS), and Canonical
Cointegrating Regression (CCR), their study found that
natural disasters, non-renewable energy, and economic
growth increase CO; emissions, while renewable energy
reduces them.

To the best of the author's knowledge, no previous
research has thoroughly explored the dynamic impacts
of natural disasters, fossil fuel consumption, renewable
energy consumption, economic growth, and capital
formation on environmental quality in Indonesia using
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Table 1. Variable description and data sources.

Variable Symbol Measurement Unit Source
CO2 emissions CcOo2 Metric tons OWID [13]
Ecological footprint EFP Global hectares (gha) GFN [14]
Natural disasters ND Total number of deaths OWID [62]
Fossil fuel FF Terawatt-hours (TWh) OWID [63]
Renewable energy RE Terawatt-hours (TWh) OWID [64]
Economic growth GDP Constant Local Currency Units (LCU) WDI [65]
Capital formation CF Constant Local Currency Units (LCU) WDI [65]

both CO: emissions and the ecological footprint as
indicators. This study fills that gap by employing the ARDL
model, reinforced with DOLS, followed by Granger
causality tests over the period 1965-2022. The findings
provide empirical insights into the short- and long-run
relationships among these variables and contribute to a
deeper understanding of the  environmental
consequences by offering a comprehensive explanation
with CO: emissions and the ecological footprint as
representations of environmental quality.

2. Materials and Methods
2.1. Data

This study investigates the dynamic impact of natural
disasters, fossil fuel consumption, renewable energy use,
economic growth, and capital formation on CO:
emissions and the ecological footprint in Indonesia from
1965 to 2022. The data is transformed into a biannual
(twice-a-year) format to increase the number of
observations and improve the robustness of the time
series analysis. CO2 emissions, measured in metric tons,
and the ecological footprint, measured in global hectares
(gha), are used as proxies to represent environmental
quality. These data were obtained from Our World in
Data (OWID) [13] and the Global Footprint Network (GFN)
[14]. Data on natural disasters, including total deaths
caused by droughts, floods, earthquakes, extreme
weather events, extreme temperatures, volcanic activity,
wildfires, glacial hazards, etc., were sourced from OWID
[62]. Information on fossil fuel and renewable energy
consumption, both measured in terawatt-hours (TWh),
was also obtained from OWID [63, 64]. Economic growth,
represented by GDP, and capital formation, both
measured in constant local currency units (LCU), were
retrieved from the World Bank's World Development
Indicators (WDI) [65]. Table 1 presents the variable
descriptions and data sources used in this study.

Environmental quality in this study is represented by two
key indicators: CO2 emissions and ecological footprint
[43, 52]. CO2 emissions serve as a direct measure of
atmospheric pollution resulting primarily from fossil fuel
combustion and industrial activity, making them a widely
used proxy for environmental degradation and climate

change [53, 54]. On the other hand, the ecological
footprint offers a broader perspective by quantifying the
pressure human activities place on ecosystems, including
resource consumption and waste generation relative to
the Earth's biocapacity [55, 56]. Together, these
indicators provide a more comprehensive assessment of
environmental quality, capturing both the immediate
impacts of emissions and the long-term sustainability of
resource use.

Furthermore, the independent variables in this study are
natural disasters, fossil fuel consumption, renewable
energy use, economic growth, and capital formation,
each selected for their relevance to environmental
quality. Natural disasters are included due to their
disruptive effects on infrastructure, energy use, and
economic activity, which can influence environmental
outcomes. This variable has been used in several studies,
such as Lee et al. [35], Doytch & Klein [38], Idroes et al.
[39], Cao et al. [19] and Dou et al. [18], to analyze its
environmental impact. Fossil fuel consumption is a major
contributor to CO; emissions and is widely recognized as
a driver of environmental degradation; researchers like
Pata [42], Acaroglu et al. [41], Idroes et al. [43] and
Ehigiamusoe et al. [44] have highlighted its significance.
Renewable energy is incorporated for its potential to
reduce emissions and support sustainable development,
as shown in studies by Waheed et al. [45], Pata [42],
Kuldasheva & Salahodjaev [46] and Sahoo et al. [47].
Economic growth reflects the scale of economic activity,
which may either increase or reduce environmental harm
depending on the development stage; this relationship
has been extensively explored by Maulidar et al. [57],
Ansari [58] and Erdogan et al. [59]. Capital formation
captures investment in infrastructure and productive
assets, which can affect emissions based on the nature of
the investments. Maulidar et al. [28], Chekouri et al. [60],
and Aderinto & Ogunro [61], among others, have
examined the environmental implications of capital
accumulation.

2.2. Mathematical Function and Empirical Mode!

This study adopts an empirical model previously
investigated by Sahoo et al. [47], Idroes et al. [43],
Waheed et al. [45], Liu et al. [48], Ehigiamusoe et al. [44],
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Hardi et al. [66] and Acaroglu et al. [41] to analyze the
influence of economic factors on the environment. A key
feature of their approach is the simultaneous assessment
of CO2 emissions and ecological footprints, providing a
holistic perspective on environmental impact within a
single framework. Building on this foundation, we
modified our model to capture the dynamic effects of
natural disasters, fossil fuel consumption, renewable
energy, economic growth, and capital formation on CO2
emissions and the ecological footprint. The initial
functional form is outlined in Equations 1 and 2.

COZt = f(NDt,FFt, REt, GDPt, CFt) (1)

EFP, = f(ND,, FF,, RE,, GDP,, CF,) )

Where €02 and EFP represent carbon dioxide emissions
and the ecological footprint, respectively. ND stands for
natural disasters, FF denotes fossil fuel consumption, RE
represents renewable energy, GDP signifies economic
growth, and CF refers to capital formation. Prior to the
analysis, all variables are transformed into their
logarithmic forms to simplify relationships and enhance
interpretability. Equations 1 and 2 are reformulated into
log-linear econometric models, as illustrated in Equations
3 and 4.

InC02; = Yo + P1InND; + Y,InFF; + P3InRE, + 3)
YulnGDPy + Y5InCF, + &
INEFP; = Yy + Y1InND; + Y, InFF, + P3InRE; +

YuInGDPy + Y5InCF, + & )

Where 1y, represents the intercept, while ¢, denotes the
error term. The coefficients ¥, to s correspond to the

estimated parameters, which may exhibit either positive
or negative signs.

2.3. Methods
2.3.1. Autoregressive Distributed Lag (ARDL)

The ARDL model is a widely utilized econometric
technique designed to estimate both short-run dynamics
and long-run equilibrium relationships among time
series variables, regardless of whether the variables are
integrated at level (0), first difference 1(1), or a
combination of both [11, 41, 67]. By incorporating
appropriate lag structures of both the dependent and
independent variables, the ARDL approach effectively
captures the temporal behavior and interactions among
variables [28, 29, 68]. Additionally, the inclusion of the
error correction term (ECT) in the model allows for
measuring the speed at which deviations from the long-
run equilibrium are corrected over time. The ARDL
method is particularly suitable for small sample sizes and
provides a robust framework for examining the dynamic
linkages between economic and environmental
indicators. Numerous studies have employed the ARDL
approach in similar contexts, including Baloch et al. [69],
Supronh & Myszczyszyn [70], Idroes et al. [29], Maulidar et
al. [28] and Arshad et al. [71], highlighting its relevance
and applicability in empirical research. The ARDL model
applied in this study is represented in Equations 5 and 6.

Where t denotes the study period and 4 represents the
first difference operator. The coefficients ¢; to ¢¢
indicate the long-run effects, whereas ¢, to ¢4 represent
the short-run relationships. The parameter A denotes the

AlnCO02, = By + X1y 914InC02,_; + X0_ 9, AINND,_; + ¥V_ 03 AInFF,_; + ¥5_ @ AInRE,_; + ¥!_  ¢sAInGDP,_; +
Z?=0 (peAlnCFt_i +AECTt_1 + ¢1lnC02t_1 + ¢2lnNDt_1 + ¢3lnFFt_1 + ¢4lnREt_1 + ¢SlnGDPC_1 + (5)

¢elnCF_q + &

AIMEFP, = By + X1, 91 AINEFP,_; + ¥ 0, AInND,_; + YV @3 AInFF,_; + ¥V_ 94 AINRE,_; + ¥F_ 95 AInGDP,_; +
Z?=0 (peAlnCFt_i +AECTt_1 + ¢1lnEFPt_1 + ¢zlnNDt_1 + ¢3lnFFt_1 + ¢4lnREt_1 + ¢SlnGDPC_1 + (6)

¢elnCF_q + &

error correction term (ECT), which captures the speed of
adjustment back to long-run equilibrium. Lastly, g and p
refer to the optimal lag lengths selected for the model.
Prior to ARDL estimation, several preliminary tests were
conducted to ensure the suitability of the data and model
specification. These include unit root tests, lag length
selection, and the ARDL bounds test for cointegration.

2.3.1.1. Unit Root Tests

The Augmented Dickey-Fuller (ADF) and Phillips-Perron
(P-P) tests were applied to examine the stationarity of
each variable [72, 73]. These tests help determine the
order of integration, ensuring that none of the series are

integrated of order two, 1(2), which is a key requirement
for the ARDL approach. The results confirm that all
variables are either stationary at level, I(0), or at first
difference, I(1), thereby justifying the use of the ARDL
model.

2.3.1.2. Lag Length Selection

The optimal lag length was selected based on the Akaike
Information Criterion (AIC), which balances goodness of
fit and model parsimony. The chosen lag structure
ensures that the ARDL model adequately captures the
short-run and long-run dynamics of the variables under
investigation [29, 74, 75].

Page | 51 .



Ekonomikalia Journal of Economics, Vol. 3, No. 1, 2025

Fossil Fossil
Fuels Fuels
[+] Economic [+] Economic
Growth Growth
Natural Natural
: [+/-] CO, 2 [+/-1] Ecological
RO Emissions {+/-] e Footprint [+/-]
-1 [+/-] Capital (-1 [+/-1] Capital
Formation Formation
Renewable Renewable
Energy Energy
Figure 2. Conceptual framework.
2 3 4
Variable Descriptive Unit Root
Lag Test
Selection Statistics Test g
7 6 5
N/ N/ N/
Diagnostic |« Dynamic  |& Cointegration
Test Estimation Test
8 9 \ 10 \ 11
N/ N e
. ~ Conclusions and Limitations and
Causality > Discussion > Policy =>{ | Opportunities for
Test Recommendations Further Research

Figure 3. Flow stages of the analysis.

2.3.1.3. ARDL Bound's Test

The ARDL bounds testing procedure was employed to
assess the existence of long-run relationships among the
variables. The null hypothesis of no cointegration is
rejected if the calculated F-statistic exceeds the upper
critical bound [76]. The test results confirm cointegration
in both models, supporting the presence of stable long-
run relationships.

2.3.2. Dynamic Ordinary Least Squares (DOLS)

The DOLS method is widely applied for estimating models
involving non-stationary time series data. Originally
introduced by Stock & Watson [77], DOLS is especially
effective for examining relationships among variables
that exhibit unit roots, as it ensures consistent estimation
of long-run parameters. This approach enhances the
conventional OLS technique by including lagged and lead
differences of the explanatory variables, thereby
addressing the challenges of non-stationarity and
minimizing the risk of spurious regression. One of the key
strengths of DOLS is its ability to yield efficient and
reliable estimates even when the data are integrated,

making it particularly suitable for capturing long-term
dynamics and persistent structural changes [78-80]. As
such, DOLS serves as a robust method for validating the
long-run coefficients obtained from ARDL models.

2.3.3. Granger Causality

The Granger causality test is a simple and widely used
method for identifying causal relationships between two
time series variables. Based on the framework developed
by Granger [81], it evaluates whether past values of one
variable improve the prediction of another beyond its
own lags. Its main advantage lies in its ease of
implementation and interpretation, allowing researchers
to assess directional causality without the need for a full
multivariate model.

2.4. Conceptual Framework

This study examines the impact of key macroeconomic
factors on two environmental indicators: CO> emissions
and ecological footprint. Figure 2 outlines a conceptual
framework in which fossil fuels, natural disasters,
renewable energy, economic growth, and capital
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Table 2. Descriptive statistics.

Variable Mean Median Max. Min. Std. Dev. Obs.
InCO2 18.9665 19.2003 20.481 16.9665 0.9920 116
INnEFP 19.2806 19.2514 19.9696 18.6714 0.4088 116
INND 5.4491 5.5419 12.1252 -0.9261 1.9996 116
InFF 6.3551 6.6228 7.9186 4.3148 1.0900 116
INRE 3.1291 3.3549 5.6664 1.1400 1.2653 116
InGDP 35.6461 35.8023 37.0141 34.0305 0.8749 116
InCF 34.2181 34.5342 35.8531 31.4433 1.2385 116
Table 3. Unit root test results.

Level 1st Diff.
Variable Intercept Trend & Intercept Intercept Trend & Intercept

t-stat. Prob. t-stat. Prob. t-stat. Prob. t-stat. Prob.
ADF
InCO2 -1.9620 0.3032 -2.2601 0.4516 -3.1989** 0.0227 -3.6382** 0.0312
INEFP 0.2732 0.9758 -3.6748** 0.0284 -4.5756%** 0.0003 -4.5624*** 0.0020
INND -2.7169 0.0746 -3.5104** 0.0435 -4.1647%%* 0.0012 -4,1093*** 0.0084
InFF -1.9081 0.3276 -1.6977 0.7460 -3.7849*** 0.0041 -4.0618*** 0.0095
INRE 0.5529 0.9878 -4.0869*** 0.0089 -3.3851** 0.0137 -4.1025%** 0.0085
InGDP -1.7657 0.3957 -1.8913 0.6523 -3.9401*** 0.0025 -4.2602%** 0.0052
InCF -2.4489 0.1311 -2.6109 0.2765 -3.3968** 0.0131 -4.1063*** 0.0083
P-P
InCO2 -1.5783 0.4904 -1.7304 0.7314 -6.1681*** 0.0000 -5.9274*** 0.0000
INnEFP 0.7456 0.9927 -3.3633 0.0616 -6.8541*** 0.0000 -6.9376%*** 0.0000
INND -4.2291%%* 0.0009 -3.6848** 0.0273 -11.049*** 0.0000 -10.880*** 0.0000
InFF -1.5416 0.5091 -0.9077 0.9509 -4.2686*** 0.0008 -4.2308*** 0.0056
InRE 0.2804 0.9763 -2.0358 0.5754 -6.9677*** 0.0000 -6.9831*** 0.0000
InGDP -1.7820 0.3878 -1.4329 0.8462 -4.9960*** 0.0001 -4.8876*** 0.0006
InCF -2.7450 0.0697 -1.9073 0.6443 -4,8957*** 0.0001 -4.6820%** 0.0013

Note: ** and *** indicates significant level in 5% and 1%, respectively.

formation influence both indicators. A positive sign (+)
indicates an increasing effect, while a negative sign (-)
reflects a reducing effect. In the left panel, CO2 emissions
are primarily driven by fossil fuel use (+), while renewable
energy reduces emissions (-). Economic growth, capital
formation, and natural disasters may have mixed effects
(+/-), depending on context. The right panel shifts to
ecological footprint, a broader measure of environmental
impact. While the same variables apply, their effects vary:
fossil fuels increase the footprint (+), renewable energy
reduces it (-), and economic growth, capital formation,
and natural disasters may have mixed effects (+/-).

2.5. Workflow of the Study

The flow stages in Figure 3 outline the step-by-step
process of the econometric analysis. It begins with
variable selection (Step 1), followed by descriptive
statistics (Step 2), stationarity tests using ADF and PP
methods (Step 3), and optimal lag selection (Step 4).
Cointegration is tested using the ARDL bounds approach
(Step 5), followed by dynamic estimation with ARDL and
DOLS models (Step 6). Diagnostic tests are conducted
(Step 7), and Granger causality analysis is performed
(Step 8). Results are interpreted in the discussion (Step 9),

followed by conclusions and
(Step 10), and consideration
research directions (Step 11).

policy recommendations
of limitations and future

3. Results and Discussion
3.1. Descriptive Statistics

Table 2 presents the descriptive statistics for key
logarithmic-transformed variables across 116
observations. CO2 has a mean of 18.97 and a median of
19.20, with @ minimum value of 16.97 and a maximum of
20.48, indicating slight left skewness. EFP shows a mean
of 19.28 and a median of 19.25, ranging from a minimum
of 18.67 to a maximum of 19.97. ND exhibits high
variability, with a mean of 5.45, a minimum of -0.93, and
a maximum of 12.13. FF has a mean of 6.36 and a median
of 6.62, with values ranging from 4.31 to 7.92. RE records
a mean of 3.13 and a median of 3.35, with a minimum of
1.14 and a maximum of 5.67. GDP ranges from 34.03 to
37.01 (mean: 35.65; median: 35.80), while CF ranges from
31.44 to 35.85 (mean: 34.22; median: 34.53), indicating
relative economic stability. Logarithmic transformation
improves normalization and comparability across
variables.
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Lag selections: (a) for the CO, model (2, 0, 1, 1, 2, 0) and (b) for the EFP model (2, 1, 0, 0, 2, 2).

Table 4. ARDL bounds test results.

F-bound's test Null Hypothesis: No levels relationship
Model Test Stat. Value Signif. 1(0) 1(1)
CO: F-stat. 7.0769 10% 2.08 3
K 5 5% 2.39 3.38
EFP F-stat. 6.8577 2.5% 2.7 3.73
k 5 1% 3.06 4.15

3.2. Unit Root Test

Table 3 presents the unit root test results using the
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP)
tests, assessing stationarity at both level and first
difference. At the level form, in both intercept and trend
& intercept specifications, all variables fail to reject the
null hypothesis of a unit root in both ADF and PP tests,
indicating that CO., EFP, ND, FF, RE, GDP, and CF are non-
stationary. The only exception is ND in the PP test, which
is significant at 1%, suggesting stationarity. However,
after first differencing, in both intercept and trend &
intercept specifications, all variables become stationary
at either the 5% or 1% significance level across both ADF
and PP tests. This confirms that all variables are
integrated of order one (I(1)), meaning they exhibit unit
roots at the level form but achieve stationarity after first
differencing.

3.3. Lag Selection Test

Figure 4 presents the lag selection results for the ARDL
models. Figure 4a identifies the optimal ARDL model for
COz2as ARDL (2,0, 1,1, 2, 0), while Figure 4b selects ARDL
(2,1,0,0, 2, 2) for EFP. The models were chosen based on
the lowest information criteria values, with the plotted
models ranked accordingly. The selected lag structures
will be used for further analysis.

3.4. ARDL Bound Test

Table 4 presents the ARDL bounds test results for CO:
and EFP models, assessing the presence of a long-run

relationship. Both models pass the 5% and 1%
significance levels, as their F-statistics (7.0769 for COz and
6.8577 for EFP) exceed the upper bound critical values of
3.38 (5%) and 4.15 (1%). These results provide strong
evidence of cointegration, confirming a stable long-run
relationship in both models.

3.5. ARDL Estimation Results
3.5.1. ARDL CO- Emissions Model

Table 5 presents the ARDL estimation results for the CO:
model, with CO; emissions as the dependent variable,
capturing both long-run and short-run impacts. In the
long run, ND has a positive impact on CO2, where a 1%
increase in ND increases CO2 by 0.0108%. FF also has a
positive impact, as a 1% increase raises COz by 0.4019%.
Similarly, GDP positively affects COz, with a 1% increase
leading to a 0.8803% rise in CO2. Conversely, RE has a
negative impact, as a 1% increase in RE reduces CO: by
0.0750%. CF has a negative coefficient but is statistically
insignificant in the long run. Furthermore, in the short
run, CO: exhibits persistence, with its lagged value COx(-
1) showing a positive impact of 0.3994%. FF has a positive
effect, where a 1% increase leads to a 0.7748% rise in CO..
GDP also positively impacts CO2, with a 1% increase
raising CO2 by 0.4957%. However, lagged GDP has a
negative impact, as a 1% increase in GDP(-1) decreases
CO:2 by 0.6160%. RE continues to show a negative effect,
where a 1% increase lowers CO; by 0.0753%. The ECT in
the CO2 model confirms a stable long-run relationship,
with 26.34% of equilibrium restored each period.
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Table 5. ARDL results for the CO, emissions model.

Variable Coeff. Std. Err. t-Stat. Prob.
Long-run

INND 0.0108* 0.0061 1.7617 0.0811
InFF 0.4019%** 0.0658 6.1060 0.0000
INRE -0.0750** 0.0289 -2.5932 0.0109
InGDP 0.8803*** 0.1383 6.3639 0.0000
InCF -0.1115 0.0764 -1.4593 0.1475
C -10.9688 3.0011 -3.6549 0.0004
Short-run

AINCO2(-1) 0.3994%** 0.0660 6.0556 0.0000
AINFF 0.7748%** 0.0805 9.6271 0.0000
AINnRE -0.0753*** 0.0168 -4.4945 0.0000
AInGDP 0.4957%** 0.1637 3.0282 0.0031
AINGDP(-1) -0.6160*** 0.1611 -3.8227 0.0002
ECT(-1) -0.2634*** 0.0364 -7.2424 0.0000
R? 0.9993

Adj. R? 0.9993

Note: *, ** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Table 6. ARDL results for the EFP model.

Variable Coeff. Std. Err. t-Stat. Prob.
Long-run

INND -0.0009 0.0027 -0.3568 0.7220
InFF 0.0311 0.0285 1.0898 0.2784
INRE -0.0191 0.0127 -1.4965 0.1376
InGDP 0.8428%** 0.0576 14.643 0.0000
InCF -0.2781%** 0.0327 -8.5014 0.0000
C -1.3676 1.2593 -1.0860 0.2801
Short-run

AINEFP(-1) 0.5478%** 0.0720 7.6137 0.0000
AInND 0.0019** 0.0009 2.1451 0.0343
AInGDP 0.5307*** 0.1113 4.7695 0.0000
AINGDP(-1) -0.5001*** 0.1279 -3.9107 0.0002
AInCF -0.0842** 0.0402 -2.0960 0.0386
AINCF(-1) 0.1011** 0.0430 2.3523 0.0206
ECT(-1) -0.3400%** 0.0477 -7.1313 0.0000
R? 0.9988

Adj. R? 0.9987

Note: *, ** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

3.5.2. ARDL EFP Model

Table 6 presents the ARDL estimation results for the EFP
model, with EFP as the dependent variable, capturing
both long-run and short-run impacts. In the long run,
GDP has a positive impact on EFP, where a 1% increase in
GDP leads to a 0.8428% rise in EFP. CF has a negative
impact, as a 1% increase decreases EFP by 0.2781%.
However, ND, FF, and RE show no significant impact on
EFP in the long run. Furthermore, in the short run, lagged
EFP(-1) has a positive effect, where a 1% increase raises
EFP by 0.5478%. ND also has a positive impact, as a 1%
increase leads to a 0.0019% rise in EFP. GDP positively
influences EFP, with a 1% increase resulting in a 0.5307%
rise in EFP. However, lagged GDP(-1) has a negative effect,
where a 1% increase in GDP(-1) decreases EFP by
0.5001%. CF negatively impacts EFP, as a 1% increase
leads to a 0.0842% reduction, but its lagged value CF(-1)
has a positive impact of 0.1011%. The ECT in the EFP

model confirms a stable long-run relationship, with 34%
of equilibrium restored each period.

3.6. Robustness Check with DOLS

The robustness test results using DOLS, as presented in
Table 7, confirm the consistency of the findings
previously obtained from the ARDL model for both the
CO2 and EFP models. Each independent variable's
coefficient aligns with the ARDL results, reinforcing the
reliability of the estimated relationships. This consistency
strengthens the argument that the selected variables
have a stable and significant impact on environmental
quality across different estimation techniques.

3.7. The Diagnostic Test

Table 8 presents the diagnostic test results for the CO:
and EFP models, confirming that both models are
statistically robust and well specified. The high R? and
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Table 7. DOLS robustness test results.

Variable Coeff. Std. Err. t-Stat. Prob.

CO2 mode/

INND 0.0016 0.0081 0.1946 0.8462
InFF 0.4275%** 0.0630 6.7885 0.0000
InRE -0.0820*** 0.0243 -3.3793 0.0011
InGDP 0.8977*** 0.1105 8.1218 0.0000
InCF -0.1228* 0.0690 -1.7790 0.0790
C -11.2805 2.4321 -4.6382 0.0000
R? 0.9983

Adj. R? 0.9976

EFP model

INND -0.0095** 0.0046 -2.0524 0.0434
InFF 0.0649* 0.0360 1.8038 0.0750
InRE -0.0200 0.0139 -1.4421 0.1532
INnGDP 0.8267*** 0.0632 13.0895 0.0000
InCF -0.2906*** 0.0394 -7.3705 0.0000
C -0.5441 1.3897 -0.3915 0.6965
R? 0.9966

Adj. R? 0.9953

Note: *, ** and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

Table 8. The result of the diagnostic test.

Diagnostic tests €02 Model EFP Model Decision

Coeff. Prob. Coeff. Prob.
R? >0.9993 - >0.9988 - The model is well fitted
Adj. R? >0.9993 - >0.9987 - The model is well fitted
CUSUM - <0.05 - <0.05 The model is stable
B-G LM test 3.2100 0.0762 3.5701 0.0617 No serial correlation exists
Harvey test 1.6308 0.1011 1.1889 0.3012 No heteroscedasticity exists
ARCH test 0.1105 0.7402 0.0030 0.9562 No heteroscedasticity exists
Ramsey test 1.7175 0.1848 0.3591 0.7203 The model is properly specified

Note: B-G refers to the Breusch-Godfrey test, and ARCH refers to the Autoregressive Conditional Heteroskedasticity test.
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Figure 5. The parameters stability test with CUSUM for CO> model (a) and EFP model (b).

adjusted R? values, each exceeding 0.99, indicate an
excellent model fit, suggesting that the independent
variables explain nearly all variations in the dependent
variables. The CUSUM test results, illustrated in Figure 5a-
b, confirm the stability of both models over time. The
Breusch-Godfrey (B-G LM) test shows no evidence of
serial correlation, while the Harvey and ARCH tests
indicate the absence of heteroscedasticity in both
models. Additionally, the Ramsey RESET test verifies that

the models are correctly specified, with no major
functional form misspecifications. Overall, these
diagnostic checks validate the reliability and consistency
of the ARDL estimation results applied in this study.

3.8. Granger Causality Test

The Granger causality test results presented in Table 9
reveal several directional relationships among the
variables in both the CO2 and EFP models. In the CO:
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Table 9. Granger causality test results.

CO2 model EFP model

Null Hypothesis F-Stat. Prob. Null Hypothesis F-Stat. Prob.
ND does not Granger Cause CO2 0.5495 0.5788 ND does not Granger Cause EFP 1.0890 0.3402
CO2 does not Granger Cause ND 4.9142%** 0.0090 EFP does not Granger Cause ND 3.9455*%* 0.0222
FF does not Granger Cause CO2 1.1152 0.3316 FF does not Granger Cause EFP 2.0106 0.1388
CO2 does not Granger Cause FF 1.0970 0.3375 EFP does not Granger Cause FF 1.1474 0.3213
RE does not Granger Cause CO2 1.3218 0.2709 RE does not Granger Cause EFP 0.4766 0.6222
CO2 does not Granger Cause RE 2.4622* 0.0900 EFP does not Granger Cause RE 5.2795%** 0.0065
GDP does not Granger Cause CO2 4.1335%* 0.0186 GDP does not Granger Cause EFP 5.1137*** 0.0075
CO2 does not Granger Cause GDP 0.0289 0.9715 EFP does not Granger Cause GDP 0.5801 0.5616
CF does not Granger Cause CO2 1.4433 0.2406 CF does not Granger Cause EFP 2.0216 0.1374
CO2 does not Granger Cause CF 4.7896** 0.0101 EFP does not Granger Cause CF 2.1284 0.1239

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.
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Figure 6. overview of Granger causality test results.

model, unidirectional causality is found running from CO>
emissions to natural disasters. Additionally, there is
evidence of causality from GDP to CO. emissions, from
CO: emissions to renewable energy, and from CO:
emissions to capital formation. Furthermore, in the EFP
model, unidirectional causality is identified from the
ecological footprint to natural disasters, from the
ecological footprint to renewable energy, and from GDP
to the ecological footprint. An overview of the Granger
causality is visualized in Figure 6.

3.9. Discussion

This study identifies various impacts of natural disasters,
fossil fuels, renewable energy, economic growth, and
capital formation on environmental indicators,
specifically CO2 emissions and the ecological footprint. An
overview of the long-run impacts is presented and
visualized in Figure 7.

Based on the ARDL results, it is evident that, in the long
run, natural disasters exert a positive influence on CO:
emissions, suggesting they contribute to an upward
trend in emissions over time. This relationship can be
attributed to the context of Indonesia, where natural
disasters frequently trigger intensive reconstruction
processes that rely heavily on fossil fuels and carbon-
intensive sectors such as construction, transportation,
and energy production. These sectors become
increasingly active during recovery phases, leading to
higher emissions. Moreover, the limited integration of
green technologies and sustainable practices in post-
disaster rebuilding efforts may further intensify
environmental degradation in the long term. However,
this result is only significant at the 10% level, indicating a
relatively weak statistical relationship. This weak
significance may be due to the variability in the scale and
frequency of natural disasters over time, as not all
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Figure 7. Graphical results of long-term impact for CO, and EFP model.

disasters have the same impact on infrastructure, energy
demand, or recovery duration. Additionally, improved
disaster response mechanisms and international aid in
recent years may have mitigated some of the long-term
environmental consequences, leading to more mixed
outcomes. As such, while natural disasters do contribute
to increased CO2 emissions, their impact appears to be
context-dependent and less consistent compared to
other drivers such as fossil fuel use or economic growth.
These findings are consistent with those of Cao et al. [19],
Idroes et al. [39] and Doytch & Klein [38], who observed
similar patterns in disaster-affected regions.

In addition to their effect on emissions, natural disasters
also impact the ecological footprint. Although the long-
run relationship is positive, it is statistically insignificant,
indicating that their long-term environmental effect may
lessen as recovery stabilizes. In contrast, the short-run
impact is both significant and positive, suggesting that
disasters impose immediate ecological pressure through
increased resource consumption, waste generation, and
disruption of sustainable practices. The lack of
significance in the long run may be attributed to effective
recovery mechanisms, policy interventions, and natural
regeneration processes that help mitigate prolonged
ecological burdens.

Shifting to the energy dimension, the influence of fossil
fuel consumption on environmental quality is both
substantial and persistent. The results indicate that fossil
fuels have a statistically significant positive effect on CO:
emissions, meaning they increase atmospheric CO: levels
in both the short and long run, reaffirming their critical
role in greenhouse gas accumulation. However, their
impact on the ecological footprint is statistically

insignificant in the long run, likely due to the broader
scope of the footprint metric, which encompasses factors
beyond emissions, such as land use, water consumption,
and waste production. This finding highlights the
complexity of environmental degradation and reinforces
the need to consider multi-dimensional environmental
indicators. These results are consistent with those of Pata
[42], Acaroglu et al. [41], Idroes et al. [43] and
Ehigiamusoe et al. [44], who emphasized the
differentiated environmental effects of fossil fuel use.

In contrast, the long-run results show that renewable
energy consumption contributes to a reduction in both
CO2 emissions and the ecological footprint, underlining
its importance in promoting  environmental
sustainability. The increased adoption of renewable
sources such as solar, wind, hydro, and bioenergy reduce
dependency on fossil fuels and contributes to a decline in
emissions over time. Additionally, renewable energy
technologies tend to have lower environmental impacts
in terms of land use, water usage, and waste generation,
collectively easing ecological pressure. These findings
support the broader view that renewable energy not only
mitigates pollution but also enhances ecological
resilience. They are in line with the results reported by
Waheed et al. [45], Pata [42], Kuldasheva & Salahodjaev
[46], Sahoo et al. [47], Ehigiamusoe et al. [44], Idroes et al.
[43] and Liu et al. [48].

Alongside energy consumption, economic growth
represented by GDP also emerges as a key driver of
environmental change. The findings show that GDP has a
positive long-run effect on both CO2 emissions and the
ecological footprint, indicating the environmental trade-
offs associated with sustained economic development. In
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Indonesia, economic expansion is typically accompanied
by intensified industrial activity, increased energy
demand, and rapid infrastructure growth, all of which
contribute to environmental degradation. These
development processes, often concentrated in urban and
industrial zones, exert significant pressure on natural
resources and ecosystems. While GDP shows varying
effects in the short run, possibly influenced by temporary
fluctuations, policy measures, or shifts in consumption,
the long-term trend highlights a clear conflict between
growth and environmental sustainability. These findings
are consistent with those of Nathaniel & Khan [82],
Ehigiamusoe et al. [44], Idroes et al. [43], Ansari [58] and
Maulidar et al. [57], who documented similar patterns in
other developing economies.

Furthermore, capital formation, on the other hand,
presents a contrasting trend, offering potential for long-
term environmental improvement. The results indicate
that capital formation has a negative relationship with
environmental degradation in the long run, particularly
through its significant negative impact on the ecological
footprint, although its effect on CO. emissions is
statistically insignificant. This suggests that investments
in infrastructure, technology, and productive capacity,
especially when directed toward sustainable and energy-
efficient systems, can enhance environmental
performance. Over time, such investments can support
the transition toward cleaner production and more
sustainable consumption patterns. These findings imply
that capital formation, when aligned with green
development goals, may play a transformative role in
reducing long-term ecological pressures. Similar
conclusions were drawn by Maulidar et al. [57] and Idroes
et al. [83], who emphasized the environmental benefits of
sustainability-oriented capital investments.

Finally, the Granger causality results indicate that CO2
emissions predict natural disasters, renewable energy
consumption, and capital formation, while GDP predicts
both CO2 emissions and ecological footprint. Similarly,
the ecological footprint predicts natural disasters and
renewable energy consumption. These findings suggest
that environmental degradation can drive changes in
disaster risk, energy transition, and investment, while
economic growth remains a key determinant of
environmental outcomes, highlighting the need for
policies that promote sustainable development.

4. Conclusions and Policy Recommendations

This study investigates the dynamic impact of natural
disasters, fossil fuels, renewable energy, economic
growth, and capital formation on environmental quality
in Indonesia over the period 1965 to 2022 using the ARDL

model. Environmental quality is measured through two
key indicators: CO. emissions and the ecological
footprint. The results reveal varying impacts in the short
run and long run. In the long run, natural disasters, fossil
fuels, and economic growth tend to contribute to
environmental degradation, while renewable energy and
capital formation show potential in improving
environmental quality. In the short run, some variables
such as economic growth and natural disasters exhibit
dynamic effects, particularly on the ecological footprint.
Furthermore, unidirectional causality is found running
from CO2 emissions and ecological footprint to natural
disasters and renewable energy. In addition,
unidirectional causality is also observed from economic
growth to both COz emissions and ecological footprint.

Based on the findings of this study, several policy
recommendations are proposed to support Indonesia’s
transition  toward  environmental  sustainability.
Integrating environmentally conscious strategies into
disaster recovery and reconstruction is essential, with an
emphasis on using low-carbon materials, renewable
energy, and sustainable infrastructure to minimize
environmental pressures during post-disaster
development. Efforts should also focus on accelerating
the shift from fossil fuels to renewable energy through
targeted incentives, the removal of fossil fuel subsidies,
and support for clean energy innovation. To ensure that
economic growth does not come at the expense of
environmental health, national development planning
should prioritize sustainable economic models by
promoting green industries, strengthening
environmental regulations, and encouraging resource-
efficient practices.

Additionally, capital formation should be directed toward
investments in clean technologies, energy-efficient
infrastructure, and sustainable industrial systems that
can help reduce environmental degradation over time.
Enhancing environmental resilience is necessary,
particularly by improving disaster preparedness,
managing resource use efficiently during emergencies,
and deploying environmentally sound technologies in
response efforts. Furthermore, robust environmental
governance is needed through improved data
monitoring, inter-agency coordination, and transparent
reporting to support evidence-based policymaking.
Finally, increasing public awareness through education
and outreach can foster sustainable consumption and
behavioral change, encouraging collective responsibility
for environmental protection. These integrated strategies
can help Indonesia achieve a balanced approach to
economic development and environmental
sustainability.
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5. Limitations and Opportunities for Further
Research

While this study provides meaningful insights into the
long- and short-run impacts of natural disasters, fossil
fuel consumption, renewable energy consumption,
economic growth, and capital formation on
environmental quality in Indonesia, it is not without
limitations. The analysis relies on CO2 emissions and the
ecological footprint as proxies for environmental
degradation, which, although widely accepted, may not
capture other critical dimensions such as deforestation,
air and water pollution, or biodiversity loss. Additionally,
the use of total deaths to represent the impact of natural
disasters may not fully reflect their economic or
environmental severity. The ARDL model, though suitable
for mixed-order integration and small samples, is
inherently linear and may not fully capture asymmetric or
distributional effects across different levels of
environmental indicators. Future research should
consider incorporating additional environmental
variables that offer a more holistic view of degradation
and sustainability. Moreover, the adoption of more
advanced and robust econometric techniques, such as
Quantile Regression (QR), Vector Error Correction Models
(VECM) or Nonlinear ARDL would provide deeper insights
into heterogeneous impacts and improve the robustness
of empirical findings. Expanding the scope to regional or
sectoral analyses within Indonesia or conducting
comparative studies across countries in Southeast Asia
could further enrich the understanding of context-
specific environmental dynamics and inform more
targeted policy interventions.
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