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Abstract 
 
Climate change is a global concern driven by increasing pollution through rising CO2 
emissions and growing ecological footprint from human activities. This research 
investigates how environmental quality (proxied by CO2 emissions and ecological 
footprint) in Indonesia is affected by multiple factors, including natural disasters, fossil 
fuels, renewable energy consumption, economic growth, and capital formation from 1965 
to 2022. The analysis employs the Autoregressive Distributed Lag (ARDL) model, with 
robustness ensured using Dynamic Ordinary Least Squares (DOLS), followed by Granger 
causality tests to examine dynamic relationships between variables. The findings show 
that natural disasters, fossil fuel consumption, and economic growth contribute to 
increasing CO2 emissions in the long run, while renewable energy consumption helps 
reduce them. Natural disasters exhibit a negative but insignificant impact on the 
ecological footprint. Economic growth increases the ecological footprint, whereas capital 
formation helps reduce it in the long run. In the short run, fossil fuels are found to 
increase CO2 emissions, while renewable energy reduces them. Natural disasters are 
found to increase the ecological footprint. Additionally, the Granger causality test 
confirms a unidirectional relationship from both natural disasters and economic growth 
to environmental quality. This study recommends that Indonesia implement integrated 
strategies focused on accelerating green energy adoption and enhancing disaster 
resilience to achieve environmental quality.  
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1. Introduction 

Climate change has emerged as an increasingly pressing 
global concern, fueled by the ongoing increase in 
greenhouse gas emissions and the growing ecological 
footprints of various nations [1–3]. The heating of the 
Earth's atmosphere has exacerbated environmental 
deterioration, sparked extreme weather phenomena, 
and imposed further strain on ecosystems and human 
communities [4, 5]. In particular, CO2 emissions have 
soared to unprecedented levels, playing a significant role 
in global warming and climate volatility [6–8]. 
Additionally, the ecological footprint, which serves as a 
comprehensive measure of environmental strain, reflects 
the degree of human demand on natural resources, 
encompassing land utilization, energy use, and waste 
production [9–11]. As environmental issues intensify, 
particularly in swiftly developing nations, it is crucial to 
comprehend the fundamental factors that contribute to 
these escalating environmental pressures [11, 12]. One of 
the countries experiencing rapid economic growth 
alongside rising CO2 emissions and an expanding 
ecological footprint is Indonesia. 

According to Our World in Data [13], as presented in 
Figure 1, from 1965 to 2022, Indonesia experienced a 
striking upward trend in both CO2 emissions and its 
ecological footprint, reflecting rapid industrialization, 
urbanization, and sustained economic growth. In 1965, 
CO2 emissions were approximately 24.7 million tons, but 
by 2022, they had surged to over 737 million tons, 
representing an almost 30-fold increase [13]. Similarly, 
the country’s ecological footprint more than tripled, rising 
from around 129 million global hectares to over 462 
million [14]. This parallel growth highlights a strong 
correlation between emissions and broader 
environmental impact. Sharp increases, particularly from 
the late 1990s onward, suggest intensified energy use, 
deforestation, and industrial expansion. Importantly, 
even during periods when CO2 emissions slightly 
declined, such as during the 1998 financial crisis and the 
2020 pandemic, the ecological footprint remained 
elevated. This indicates that environmental degradation 
is driven not only by emissions but also by land use, 
resource consumption, and demographic pressures [15, 
16]. 

Indonesia, as one of the fastest-growing economies in 
Southeast Asia, faces mounting environmental 
challenges driven by a range of interconnected factors. 
Environmental degradation in the country is influenced 
by natural disasters, fossil fuel dependence, renewable 
energy adoption, economic growth, and capital 
formation [17–19]. While natural disasters are frequently 
viewed as consequences of climate change, they can also 

serve as catalysts for emissions and ecological strain due 
to the reconstruction efforts and heightened energy 
consumption that follow [17, 20, 21]. Fossil fuels remain 
the dominant source of energy worldwide, and their 
combustion is a major source of CO2 emissions and the 
depletion of natural resources, further exacerbating 
environmental decline [22–25]. Conversely, renewable 
energy is vital for enhancing environmental quality, as it 
generates considerably lower emissions than fossil fuels. 
Its implementation aids in decreasing pollution levels and 
alleviating greenhouse gas concentrations, positioning it 
as a more sustainable energy option [24–27]. Moreover, 
economic growth and capital formation, although crucial 
for progress, can place strain on the environment by 
encouraging industrial operations, raising energy usage, 
and broadening infrastructure, especially in emerging 
economies [12, 25, 28, 29]. 

As reported by the Center for Research on the 
Epidemiology of Disasters (CRED) [30], the frequency of 
natural disasters has risen sharply by 46% over the past 
three decades, from 303 events in 1990 to 444 in 2019. 
This increase has led to severe consequences, including 
loss of life, injuries, and economic disruption. Financially, 
disaster-related damages have more than doubled, 
surging from USD 49.78 million in 1990 to USD 100.94 
million in 2019, with an average annual growth of 2.38% 
[18, 30]. Previous studies have primarily examined the 
social and economic impacts of natural disasters, with 
limited focus on environmental effects. However, 
disasters can lower overall consumption [31–33], 
potentially reducing energy use and CO2 emissions [34]. 
Lee et al. [35], analyzing data from 123 countries (1990–
2015), found that disasters significantly reduce oil, 
renewable, and nuclear energy consumption, linking this 
to consumption poverty [36, 37]. Reduced transport 
activity may also drive energy savings. Conversely, Doytch 
& Klein [38], using data from 80 countries (1961–2011), 
reported a positive link between disasters and energy 
use, varying by energy type and income level. High-
income countries saw increased renewable use, while 
middle- and low-income nations experienced higher 
residential and industrial consumption. Similarly, Idroes 
et al. [39], using Autoregressive Distributed Lag (ARDL) 
methods for Indonesia over the period 1980–2021, found 
that natural disasters, non-renewable energy 
consumption, and economic growth significantly increase 
CO2 emissions, while renewable energy usage 
contributes to their reduction. The study also identified a 
unidirectional causal relationship from natural disasters 
and renewable energy to CO2 emissions. Furthermore, 
Cao et al. [19] employed the Nonlinear Autoregressive 
Distributed Lag (NARDL) model to analyze data from 
China spanning 2000 to 2020, uncovering a significant  
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Figure 1. Trends in CO2 emissions and ecological footprint in Indonesia from 1965 to 2022 [13, 14]. 
 
long-term nonlinear relationship among carbon 
emissions, new energy consumption, and direct 
economic losses resulting from natural disasters. Their 
findings indicate a U-shaped correlation between 
disaster-related losses and carbon emissions: when 
losses fall below a certain threshold, emissions are 
significantly reduced, whereas smaller-scale losses tend 
to increase emissions. 

The type of energy utilized significantly influences 
environmental quality, often measured through 
indicators such as CO2 emissions and ecological footprint 
[40, 41]. Non-renewable energy sources, particularly 
fossil fuels like coal, oil, and natural gas, are major 
contributors to environmental degradation, leading to 
increased CO2 emissions and a larger ecological footprint 
due to extraction, processing, and combustion. The 
negative environmental impact of non-renewable energy 
has been confirmed by several researchers, including 
Pata [42], Acaroğlu et al. [41] and Idroes et al. [43], who 
found that fossil fuel consumption significantly increases 
CO2 emissions. Similarly, studies by Pata [42], 
Ehigiamusoe et al. [44] and Idroes et al. [43] highlight its 
role in expanding the ecological footprint. In contrast, 
renewable energy sources such as solar, wind, hydro, and 
biomass are generally associated with lower emissions 
and a reduced environmental impact. This has been 
supported by research from Waheed et al. [45], Pata [42], 
Kuldasheva & Salahodjaev [46] and Sahoo et al. [47], who 
observed that renewables contribute to lower CO2 
emissions, while Pata [42], Ehigiamusoe et al. [44], Idroes 
et al. [43], Liu et al. [48] and Sikdar et al. [49] found a 
positive effect in reducing the ecological footprint. By 
replacing fossil fuels, renewable energy helps decrease 
greenhouse gas emissions and alleviates pressure on 
natural ecosystems, thereby improving overall 

environmental quality. Consequently, the transition to 
renewable energy is considered essential for reducing 
carbon intensity and promoting sustainable ecological 
outcomes [29, 40, 41]. 

Focusing on Indonesia, Rahman et al. [50] found that air 
quality in the country is significantly impacted by 
frequent forest fires and volcanic eruptions, both of 
which are linked to deforestation and natural disasters. 
Their study, covering 30 Indonesian cities from 2002 to 
2019, revealed that economic growth is associated with 
worsening air quality, rejecting the Environmental 
Kuznets Curve (EKC) hypothesis. Furthermore, the study 
highlighted the significant contribution of forest fires to 
pollution, with a partial Benefit-Cost Analysis (BCA) 
estimating that reducing forest fires by 1% could yield 
health and agricultural benefits ranging from US$17 
million to US$145 million. In another study, Kurniawan et 
al. [51] used Dynamic ARDL to analyze data from 1991 to 
2020 and found that forest and land fires increase 
temperatures, contributing to climate change in 
Indonesia. Additionally, Idroes et al. [39] examined the 
relationship between natural disasters, energy 
consumption, and CO2 emissions in Indonesia from 1980 
to 2021. Using ARDL, with robustness checks through 
Fully Modified Ordinary Least Squares (FMOLS), Dynamic 
Ordinary Least Squares (DOLS), and Canonical 
Cointegrating Regression (CCR), their study found that 
natural disasters, non-renewable energy, and economic 
growth increase CO2 emissions, while renewable energy 
reduces them. 

To the best of the author's knowledge, no previous 
research has thoroughly explored the dynamic impacts 
of natural disasters, fossil fuel consumption, renewable 
energy consumption, economic growth, and capital 
formation on environmental quality in Indonesia using  
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Table 1. Variable description and data sources. 

Variable Symbol Measurement Unit Source 
CO2 emissions CO2 Metric tons OWID [13] 
Ecological footprint EFP Global hectares (gha) GFN [14] 
Natural disasters ND Total number of deaths OWID [62] 
Fossil fuel FF Terawatt-hours (TWh) OWID [63] 
Renewable energy RE Terawatt-hours (TWh) OWID [64] 
Economic growth GDP Constant Local Currency Units (LCU) WDI [65] 
Capital formation CF Constant Local Currency Units (LCU) WDI [65] 

 
both CO2 emissions and the ecological footprint as 
indicators. This study fills that gap by employing the ARDL 
model, reinforced with DOLS, followed by Granger 
causality tests over the period 1965–2022. The findings 
provide empirical insights into the short- and long-run 
relationships among these variables and contribute to a 
deeper understanding of the environmental 
consequences by offering a comprehensive explanation 
with CO2 emissions and the ecological footprint as 
representations of environmental quality. 

2. Materials and Methods 

2.1. Data 

This study investigates the dynamic impact of natural 
disasters, fossil fuel consumption, renewable energy use, 
economic growth, and capital formation on CO2 
emissions and the ecological footprint in Indonesia from 
1965 to 2022. The data is transformed into a biannual 
(twice-a-year) format to increase the number of 
observations and improve the robustness of the time 
series analysis. CO2 emissions, measured in metric tons, 
and the ecological footprint, measured in global hectares 
(gha), are used as proxies to represent environmental 
quality. These data were obtained from Our World in 
Data (OWID) [13] and the Global Footprint Network (GFN) 
[14]. Data on natural disasters, including total deaths 
caused by droughts, floods, earthquakes, extreme 
weather events, extreme temperatures, volcanic activity, 
wildfires, glacial hazards, etc., were sourced from OWID 
[62]. Information on fossil fuel and renewable energy 
consumption, both measured in terawatt-hours (TWh), 
was also obtained from OWID [63, 64]. Economic growth, 
represented by GDP, and capital formation, both 
measured in constant local currency units (LCU), were 
retrieved from the World Bank’s World Development 
Indicators (WDI) [65]. Table 1 presents the variable 
descriptions and data sources used in this study. 

Environmental quality in this study is represented by two 
key indicators: CO2 emissions and ecological footprint 
[43, 52]. CO2 emissions serve as a direct measure of 
atmospheric pollution resulting primarily from fossil fuel 
combustion and industrial activity, making them a widely 
used proxy for environmental degradation and climate 

change [53, 54]. On the other hand, the ecological 
footprint offers a broader perspective by quantifying the 
pressure human activities place on ecosystems, including 
resource consumption and waste generation relative to 
the Earth’s biocapacity [55, 56]. Together, these 
indicators provide a more comprehensive assessment of 
environmental quality, capturing both the immediate 
impacts of emissions and the long-term sustainability of 
resource use. 

Furthermore, the independent variables in this study are 
natural disasters, fossil fuel consumption, renewable 
energy use, economic growth, and capital formation, 
each selected for their relevance to environmental 
quality. Natural disasters are included due to their 
disruptive effects on infrastructure, energy use, and 
economic activity, which can influence environmental 
outcomes. This variable has been used in several studies, 
such as Lee et al. [35], Doytch & Klein [38], Idroes et al. 
[39], Cao et al. [19] and Dou et al. [18], to analyze its 
environmental impact. Fossil fuel consumption is a major 
contributor to CO2 emissions and is widely recognized as 
a driver of environmental degradation; researchers like 
Pata [42], Acaroğlu et al. [41], Idroes et al. [43] and 
Ehigiamusoe et al. [44] have highlighted its significance. 
Renewable energy is incorporated for its potential to 
reduce emissions and support sustainable development, 
as shown in studies by Waheed et al. [45], Pata [42], 
Kuldasheva & Salahodjaev [46] and Sahoo et al. [47]. 
Economic growth reflects the scale of economic activity, 
which may either increase or reduce environmental harm 
depending on the development stage; this relationship 
has been extensively explored by Maulidar et al. [57], 
Ansari [58] and Erdoğan et al. [59]. Capital formation 
captures investment in infrastructure and productive 
assets, which can affect emissions based on the nature of 
the investments. Maulidar et al. [28], Chekouri et al. [60], 
and Aderinto & Ogunro [61], among others, have 
examined the environmental implications of capital 
accumulation. 

2.2. Mathematical Function and Empirical Model 

This study adopts an empirical model previously 
investigated by Sahoo et al. [47], Idroes et al. [43], 
Waheed et al. [45], Liu et al. [48], Ehigiamusoe et al. [44], 



Ekonomikalia Journal of Economics, Vol. 3, No. 1, 2025 

 Page | 51  
 

Hardi et al. [66] and Acaroğlu et al. [41] to analyze the 
influence of economic factors on the environment. A key 
feature of their approach is the simultaneous assessment 
of CO2 emissions and ecological footprints, providing a 
holistic perspective on environmental impact within a 
single framework. Building on this foundation, we 
modified our model to capture the dynamic effects of 
natural disasters, fossil fuel consumption, renewable 
energy, economic growth, and capital formation on CO2 
emissions and the ecological footprint. The initial 
functional form is outlined in Equations 1 and 2. 

𝐶𝑂2𝑡 = 𝑓(𝑁𝐷𝑡, 𝐹𝐹𝑡, 𝑅𝐸𝑡, 𝐺𝐷𝑃𝑡, 𝐶𝐹𝑡) (1) 

 
𝐸𝐹𝑃𝑡 = 𝑓(𝑁𝐷𝑡, 𝐹𝐹𝑡, 𝑅𝐸𝑡, 𝐺𝐷𝑃𝑡, 𝐶𝐹𝑡) (2) 

Where 𝐶𝑂2 and 𝐸𝐹𝑃 represent carbon dioxide emissions 
and the ecological footprint, respectively. 𝑁𝐷 stands for 
natural disasters, 𝐹𝐹 denotes fossil fuel consumption, 𝑅𝐸 
represents renewable energy, 𝐺𝐷𝑃 signifies economic 
growth, and 𝐶𝐹 refers to capital formation. Prior to the 
analysis, all variables are transformed into their 
logarithmic forms to simplify relationships and enhance 
interpretability. Equations 1 and 2 are reformulated into 
log-linear econometric models, as illustrated in Equations 
3 and 4. 

𝑙𝑛𝐶𝑂2𝑡 = 𝜓0 +𝜓1𝑙𝑛𝑁𝐷𝑡 + 𝜓2𝑙𝑛𝐹𝐹𝑡 + 𝜓3𝑙𝑛𝑅𝐸𝑡 +

𝜓4𝑙𝑛𝐺𝐷𝑃𝑡 + 𝜓5𝑙𝑛𝐶𝐹𝑡 + 𝜀𝑡  
(3) 

 
𝑙𝑛𝐸𝐹𝑃𝑡 = 𝜓0 + 𝜓1𝑙𝑛𝑁𝐷𝑡 + 𝜓2𝑙𝑛𝐹𝐹𝑡 + 𝜓3𝑙𝑛𝑅𝐸𝑡 +

𝜓4𝑙𝑛𝐺𝐷𝑃𝑡 + 𝜓5𝑙𝑛𝐶𝐹𝑡 + 𝜀𝑡  
(4) 

Where 𝜓0 represents the intercept, while 𝜀𝑡 denotes the 
error term. The coefficients 𝜓1 to 𝜓5 correspond to the 

estimated parameters, which may exhibit either positive 
or negative signs. 

2.3. Methods 

2.3.1. Autoregressive Distributed Lag (ARDL) 

The ARDL model is a widely utilized econometric 
technique designed to estimate both short-run dynamics 
and long-run equilibrium relationships among time 
series variables, regardless of whether the variables are 
integrated at level I(0), first difference I(1), or a 
combination of both [11, 41, 67]. By incorporating 
appropriate lag structures of both the dependent and 
independent variables, the ARDL approach effectively 
captures the temporal behavior and interactions among 
variables [28, 29, 68]. Additionally, the inclusion of the 
error correction term (ECT) in the model allows for 
measuring the speed at which deviations from the long-
run equilibrium are corrected over time. The ARDL 
method is particularly suitable for small sample sizes and 
provides a robust framework for examining the dynamic 
linkages between economic and environmental 
indicators. Numerous studies have employed the ARDL 
approach in similar contexts, including Baloch et al. [69], 
Suproń & Myszczyszyn [70], Idroes et al. [29], Maulidar et 
al. [28] and Arshad et al. [71], highlighting its relevance 
and applicability in empirical research. The ARDL model 
applied in this study is represented in Equations 5 and 6. 

Where 𝑡 denotes the study period and 𝛥 represents the 
first difference operator. The coefficients 𝜙1 to 𝜙6 
indicate the long-run effects, whereas 𝜑1 to 𝜑6 represent 
the short-run relationships. The parameter 𝜆 denotes the 

𝛥𝑙𝑛𝐶𝑂2𝑡 = 𝛽0 + ∑ 𝜑1𝛥𝑙𝑛𝐶𝑂2𝑡−𝑖 + ∑ 𝜑2𝛥𝑙𝑛𝑁𝐷𝑡−𝑖 + ∑ 𝜑3𝛥𝑙𝑛𝐹𝐹𝑡−𝑖 +
𝑝
𝑖=0 ∑ 𝜑4𝛥𝑙𝑛𝑅𝐸𝑡−𝑖 +

𝑝
𝑖=0 ∑ 𝜑5𝛥𝑙𝑛𝐺𝐷𝑃𝑡−𝑖

𝑝
𝑖=0 +

𝑝
𝑖=0

𝑞
𝑖=0

∑ 𝜑6𝛥𝑙𝑛𝐶𝐹𝑡−𝑖 +
𝑝
𝑖=0 𝜆𝐸𝐶𝑇𝑡−1 + 𝜙1𝑙𝑛𝐶𝑂2𝑡−1 + 𝜙2𝑙𝑛𝑁𝐷𝑡−1 +𝜙3𝑙𝑛𝐹𝐹𝑡−1 + 𝜙4𝑙𝑛𝑅𝐸𝑡−1 + 𝜙5𝑙𝑛𝐺𝐷𝑃𝑡−1 +

𝜙6𝑙𝑛𝐶𝐹𝑡−1 + 𝜀𝑡   

(5) 

 

𝛥𝑙𝑛𝐸𝐹𝑃𝑡 = 𝛽0 + ∑ 𝜑1𝛥𝑙𝑛𝐸𝐹𝑃𝑡−𝑖 +∑ 𝜑2𝛥𝑙𝑛𝑁𝐷𝑡−𝑖 + ∑ 𝜑3𝛥𝑙𝑛𝐹𝐹𝑡−𝑖 +
𝑝
𝑖=0 ∑ 𝜑4𝛥𝑙𝑛𝑅𝐸𝑡−𝑖 +

𝑝
𝑖=0 ∑ 𝜑5𝛥𝑙𝑛𝐺𝐷𝑃𝑡−𝑖

𝑝
𝑖=0 +

𝑝
𝑖=0

𝑞
𝑖=0

∑ 𝜑6𝛥𝑙𝑛𝐶𝐹𝑡−𝑖 +
𝑝
𝑖=0 𝜆𝐸𝐶𝑇𝑡−1 + 𝜙1𝑙𝑛𝐸𝐹𝑃𝑡−1 + 𝜙2𝑙𝑛𝑁𝐷𝑡−1 + 𝜙3𝑙𝑛𝐹𝐹𝑡−1 + 𝜙4𝑙𝑛𝑅𝐸𝑡−1 + 𝜙5𝑙𝑛𝐺𝐷𝑃𝑡−1 +

𝜙6𝑙𝑛𝐶𝐹𝑡−1 + 𝜀𝑡   

(6) 

 

error correction term (ECT), which captures the speed of 
adjustment back to long-run equilibrium. Lastly, 𝑞 and 𝑝 
refer to the optimal lag lengths selected for the model. 
Prior to ARDL estimation, several preliminary tests were 
conducted to ensure the suitability of the data and model 
specification. These include unit root tests, lag length 
selection, and the ARDL bounds test for cointegration. 

2.3.1.1. Unit Root Tests  

The Augmented Dickey-Fuller (ADF) and Phillips-Perron 
(P-P) tests were applied to examine the stationarity of 
each variable [72, 73]. These tests help determine the 
order of integration, ensuring that none of the series are 

integrated of order two, I(2), which is a key requirement 
for the ARDL approach. The results confirm that all 
variables are either stationary at level, I(0), or at first 
difference, I(1), thereby justifying the use of the ARDL 
model. 

2.3.1.2. Lag Length Selection 

The optimal lag length was selected based on the Akaike 
Information Criterion (AIC), which balances goodness of 
fit and model parsimony. The chosen lag structure 
ensures that the ARDL model adequately captures the 
short-run and long-run dynamics of the variables under 
investigation [29, 74, 75].
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Figure 2. Conceptual framework. 

 

Figure 3. Flow stages of the analysis. 
 
2.3.1.3. ARDL Bounds Test 

The ARDL bounds testing procedure was employed to 
assess the existence of long-run relationships among the 
variables. The null hypothesis of no cointegration is 
rejected if the calculated F-statistic exceeds the upper 
critical bound [76]. The test results confirm cointegration 
in both models, supporting the presence of stable long-
run relationships. 

2.3.2. Dynamic Ordinary Least Squares (DOLS) 

The DOLS method is widely applied for estimating models 
involving non-stationary time series data. Originally 
introduced by Stock & Watson [77], DOLS is especially 
effective for examining relationships among variables 
that exhibit unit roots, as it ensures consistent estimation 
of long-run parameters. This approach enhances the 
conventional OLS technique by including lagged and lead 
differences of the explanatory variables, thereby 
addressing the challenges of non-stationarity and 
minimizing the risk of spurious regression. One of the key 
strengths of DOLS is its ability to yield efficient and 
reliable estimates even when the data are integrated, 

making it particularly suitable for capturing long-term 
dynamics and persistent structural changes [78–80]. As 
such, DOLS serves as a robust method for validating the 
long-run coefficients obtained from ARDL models. 

2.3.3. Granger Causality 

The Granger causality test is a simple and widely used 
method for identifying causal relationships between two 
time series variables. Based on the framework developed 
by Granger [81], it evaluates whether past values of one 
variable improve the prediction of another beyond its 
own lags. Its main advantage lies in its ease of 
implementation and interpretation, allowing researchers 
to assess directional causality without the need for a full 
multivariate model. 

2.4. Conceptual Framework 

This study examines the impact of key macroeconomic 
factors on two environmental indicators: CO2 emissions 
and ecological footprint. Figure 2 outlines a conceptual 
framework in which fossil fuels, natural disasters, 
renewable energy, economic growth, and capital  
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Table 2. Descriptive statistics. 

Variable Mean Median Max. Min. Std. Dev. Obs. 
lnCO2 18.9665 19.2003 20.481 16.9665 0.9920 116 
lnEFP 19.2806 19.2514 19.9696 18.6714 0.4088 116 
lnND 5.4491 5.5419 12.1252 -0.9261 1.9996 116 
lnFF 6.3551 6.6228 7.9186 4.3148 1.0900 116 
lnRE 3.1291 3.3549 5.6664 1.1400 1.2653 116 
lnGDP 35.6461 35.8023 37.0141 34.0305 0.8749 116 
lnCF 34.2181 34.5342 35.8531 31.4433 1.2385 116 

Table 3. Unit root test results. 

Variable 
Level 1st Diff. 
Intercept Trend & Intercept Intercept Trend & Intercept 
t-stat. Prob. t-stat. Prob. t-stat. Prob. t-stat. Prob. 

ADF         
lnCO2 -1.9620 0.3032 -2.2601 0.4516 -3.1989** 0.0227 -3.6382** 0.0312 
lnEFP 0.2732 0.9758 -3.6748** 0.0284 -4.5756*** 0.0003 -4.5624*** 0.0020 
lnND -2.7169 0.0746 -3.5104** 0.0435 -4.1647*** 0.0012 -4.1093*** 0.0084 
lnFF -1.9081 0.3276 -1.6977 0.7460 -3.7849*** 0.0041 -4.0618*** 0.0095 
lnRE  0.5529 0.9878 -4.0869*** 0.0089 -3.3851** 0.0137 -4.1025*** 0.0085 
lnGDP -1.7657 0.3957 -1.8913 0.6523 -3.9401*** 0.0025 -4.2602*** 0.0052 
lnCF -2.4489 0.1311 -2.6109 0.2765 -3.3968** 0.0131 -4.1063*** 0.0083 
P-P         
lnCO2 -1.5783 0.4904 -1.7304 0.7314 -6.1681*** 0.0000 -5.9274*** 0.0000 
lnEFP  0.7456 0.9927 -3.3633 0.0616 -6.8541*** 0.0000 -6.9376*** 0.0000 
lnND -4.2291*** 0.0009 -3.6848** 0.0273 -11.049*** 0.0000 -10.880*** 0.0000 
lnFF -1.5416 0.5091 -0.9077 0.9509 -4.2686*** 0.0008 -4.2308*** 0.0056 
lnRE  0.2804 0.9763 -2.0358 0.5754 -6.9677*** 0.0000 -6.9831*** 0.0000 
lnGDP -1.7820 0.3878 -1.4329 0.8462 -4.9960*** 0.0001 -4.8876*** 0.0006 
lnCF -2.7450 0.0697 -1.9073 0.6443 -4.8957*** 0.0001 -4.6820*** 0.0013 

Note: ** and *** indicates significant level in 5% and 1%, respectively. 
 
formation influence both indicators. A positive sign (+) 
indicates an increasing effect, while a negative sign (–) 
reflects a reducing effect. In the left panel, CO2 emissions 
are primarily driven by fossil fuel use (+), while renewable 
energy reduces emissions (–). Economic growth, capital 
formation, and natural disasters may have mixed effects 
(+/–), depending on context. The right panel shifts to 
ecological footprint, a broader measure of environmental 
impact. While the same variables apply, their effects vary: 
fossil fuels increase the footprint (+), renewable energy 
reduces it (–), and economic growth, capital formation, 
and natural disasters may have mixed effects (+/–). 

2.5. Workflow of the Study 

The flow stages in Figure 3 outline the step-by-step 
process of the econometric analysis. It begins with 
variable selection (Step 1), followed by descriptive 
statistics (Step 2), stationarity tests using ADF and PP 
methods (Step 3), and optimal lag selection (Step 4). 
Cointegration is tested using the ARDL bounds approach 
(Step 5), followed by dynamic estimation with ARDL and 
DOLS models (Step 6). Diagnostic tests are conducted 
(Step 7), and Granger causality analysis is performed 
(Step 8). Results are interpreted in the discussion (Step 9), 

followed by conclusions and policy recommendations 
(Step 10), and consideration of limitations and future 
research directions (Step 11). 

3. Results and Discussion 

3.1. Descriptive Statistics 

Table 2 presents the descriptive statistics for key 
logarithmic-transformed variables across 116 
observations. CO2 has a mean of 18.97 and a median of 
19.20, with a minimum value of 16.97 and a maximum of 
20.48, indicating slight left skewness. EFP shows a mean 
of 19.28 and a median of 19.25, ranging from a minimum 
of 18.67 to a maximum of 19.97. ND exhibits high 
variability, with a mean of 5.45, a minimum of -0.93, and 
a maximum of 12.13. FF has a mean of 6.36 and a median 
of 6.62, with values ranging from 4.31 to 7.92. RE records 
a mean of 3.13 and a median of 3.35, with a minimum of 
1.14 and a maximum of 5.67. GDP ranges from 34.03 to 
37.01 (mean: 35.65; median: 35.80), while CF ranges from 
31.44 to 35.85 (mean: 34.22; median: 34.53), indicating 
relative economic stability. Logarithmic transformation 
improves normalization and comparability across 
variables.
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Figure 4. Lag selections: (a) for the CO₂ model (2, 0, 1, 1, 2, 0) and (b) for the EFP model (2, 1, 0, 0, 2, 2). 

Table 4. ARDL bounds test results. 

F-bounds test  Null Hypothesis: No levels relationship 
Model Test Stat. Value  Signif. I(0) I(1) 
CO2 F-stat. 7.0769  10% 2.08 3 
 K 5  5% 2.39 3.38 
EFP F-stat. 6.8577  2.5%  2.7 3.73 
 k 5  1% 3.06 4.15 

3.2. Unit Root Test 

Table 3 presents the unit root test results using the 
Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) 
tests, assessing stationarity at both level and first 
difference. At the level form, in both intercept and trend 
& intercept specifications, all variables fail to reject the 
null hypothesis of a unit root in both ADF and PP tests, 
indicating that CO2, EFP, ND, FF, RE, GDP, and CF are non-
stationary. The only exception is ND in the PP test, which 
is significant at 1%, suggesting stationarity. However, 
after first differencing, in both intercept and trend & 
intercept specifications, all variables become stationary 
at either the 5% or 1% significance level across both ADF 
and PP tests. This confirms that all variables are 
integrated of order one (I(1)), meaning they exhibit unit 
roots at the level form but achieve stationarity after first 
differencing. 

3.3. Lag Selection Test 

Figure 4 presents the lag selection results for the ARDL 
models. Figure 4a identifies the optimal ARDL model for 
CO2 as ARDL (2, 0, 1, 1, 2, 0), while Figure 4b selects ARDL 
(2, 1, 0, 0, 2, 2) for EFP. The models were chosen based on 
the lowest information criteria values, with the plotted 
models ranked accordingly. The selected lag structures 
will be used for further analysis. 

3.4. ARDL Bound Test 

Table 4 presents the ARDL bounds test results for CO2 
and EFP models, assessing the presence of a long-run 

relationship. Both models pass the 5% and 1% 
significance levels, as their F-statistics (7.0769 for CO2 and 
6.8577 for EFP) exceed the upper bound critical values of 
3.38 (5%) and 4.15 (1%). These results provide strong 
evidence of cointegration, confirming a stable long-run 
relationship in both models. 

3.5. ARDL Estimation Results 

3.5.1. ARDL CO2 Emissions Model 

Table 5 presents the ARDL estimation results for the CO2 
model, with CO2 emissions as the dependent variable, 
capturing both long-run and short-run impacts. In the 
long run, ND has a positive impact on CO2, where a 1% 
increase in ND increases CO2 by 0.0108%. FF also has a 
positive impact, as a 1% increase raises CO2 by 0.4019%. 
Similarly, GDP positively affects CO2, with a 1% increase 
leading to a 0.8803% rise in CO2. Conversely, RE has a 
negative impact, as a 1% increase in RE reduces CO2 by 
0.0750%. CF has a negative coefficient but is statistically 
insignificant in the long run. Furthermore, in the short 
run, CO2 exhibits persistence, with its lagged value CO2(-
1) showing a positive impact of 0.3994%. FF has a positive 
effect, where a 1% increase leads to a 0.7748% rise in CO2. 
GDP also positively impacts CO2, with a 1% increase 
raising CO2 by 0.4957%. However, lagged GDP has a 
negative impact, as a 1% increase in GDP(-1) decreases 
CO2 by 0.6160%. RE continues to show a negative effect, 
where a 1% increase lowers CO2 by 0.0753%. The ECT in 
the CO2 model confirms a stable long-run relationship, 
with 26.34% of equilibrium restored each period.
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Table 5. ARDL results for the CO2 emissions model. 

Variable Coeff. Std. Err. t-Stat. Prob. 
Long-run     
lnND 0.0108* 0.0061 1.7617 0.0811 
lnFF 0.4019*** 0.0658 6.1060 0.0000 
lnRE -0.0750** 0.0289 -2.5932 0.0109 
lnGDP 0.8803*** 0.1383 6.3639 0.0000 
lnCF -0.1115 0.0764 -1.4593 0.1475 
C -10.9688 3.0011 -3.6549 0.0004 
Short-run     
∆lnCO2(-1) 0.3994*** 0.0660 6.0556 0.0000 
∆lnFF 0.7748*** 0.0805 9.6271 0.0000 
∆lnRE -0.0753*** 0.0168 -4.4945 0.0000 
∆lnGDP 0.4957*** 0.1637 3.0282 0.0031 
∆lnGDP(-1) -0.6160*** 0.1611 -3.8227 0.0002 
ECT(-1) -0.2634*** 0.0364 -7.2424 0.0000 
R2 0.9993    
Adj. R2 0.9993    

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

Table 6. ARDL results for the EFP model. 

Variable Coeff. Std. Err. t-Stat. Prob. 
Long-run     
lnND -0.0009 0.0027 -0.3568 0.7220 
lnFF 0.0311 0.0285 1.0898 0.2784 
lnRE -0.0191 0.0127 -1.4965 0.1376 
lnGDP 0.8428*** 0.0576 14.643 0.0000 
lnCF -0.2781*** 0.0327 -8.5014 0.0000 
C -1.3676 1.2593 -1.0860 0.2801 
Short-run     
∆lnEFP(-1) 0.5478*** 0.0720 7.6137 0.0000 
∆lnND 0.0019** 0.0009 2.1451 0.0343 
∆lnGDP 0.5307*** 0.1113 4.7695 0.0000 
∆lnGDP(-1) -0.5001*** 0.1279 -3.9107 0.0002 
∆lnCF -0.0842** 0.0402 -2.0960 0.0386 
∆lnCF(-1) 0.1011** 0.0430 2.3523 0.0206 
ECT(-1) -0.3400*** 0.0477 -7.1313 0.0000 
R2 0.9988    
Adj. R2 0.9987    

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.  
 
3.5.2. ARDL EFP Model 

Table 6 presents the ARDL estimation results for the EFP 
model, with EFP as the dependent variable, capturing 
both long-run and short-run impacts. In the long run, 
GDP has a positive impact on EFP, where a 1% increase in 
GDP leads to a 0.8428% rise in EFP. CF has a negative 
impact, as a 1% increase decreases EFP by 0.2781%. 
However, ND, FF, and RE show no significant impact on 
EFP in the long run. Furthermore, in the short run, lagged 
EFP(-1) has a positive effect, where a 1% increase raises 
EFP by 0.5478%. ND also has a positive impact, as a 1% 
increase leads to a 0.0019% rise in EFP. GDP positively 
influences EFP, with a 1% increase resulting in a 0.5307% 
rise in EFP. However, lagged GDP(-1) has a negative effect, 
where a 1% increase in GDP(-1) decreases EFP by 
0.5001%. CF negatively impacts EFP, as a 1% increase 
leads to a 0.0842% reduction, but its lagged value CF(-1) 
has a positive impact of 0.1011%. The ECT in the EFP 

model confirms a stable long-run relationship, with 34% 
of equilibrium restored each period. 

3.6. Robustness Check with DOLS 

The robustness test results using DOLS, as presented in 
Table 7, confirm the consistency of the findings 
previously obtained from the ARDL model for both the 
CO2 and EFP models. Each independent variable's 
coefficient aligns with the ARDL results, reinforcing the 
reliability of the estimated relationships. This consistency 
strengthens the argument that the selected variables 
have a stable and significant impact on environmental 
quality across different estimation techniques. 

3.7. The Diagnostic Test 

Table 8 presents the diagnostic test results for the CO2 
and EFP models, confirming that both models are 
statistically robust and well specified. The high R2 and  
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Table 7. DOLS robustness test results. 

Variable Coeff. Std. Err. t-Stat. Prob.  
CO2 model     
lnND 0.0016 0.0081 0.1946 0.8462 
lnFF 0.4275*** 0.0630 6.7885 0.0000 
lnRE -0.0820*** 0.0243 -3.3793 0.0011 
lnGDP 0.8977*** 0.1105 8.1218 0.0000 
lnCF -0.1228* 0.0690 -1.7790 0.0790 
C -11.2805 2.4321 -4.6382 0.0000 
R2 0.9983    
Adj. R2 0.9976    
EFP model     
lnND -0.0095** 0.0046 -2.0524 0.0434 
lnFF 0.0649* 0.0360 1.8038 0.0750 
lnRE -0.0200 0.0139 -1.4421 0.1532 
lnGDP 0.8267*** 0.0632 13.0895 0.0000 
lnCF -0.2906*** 0.0394 -7.3705 0.0000 
C -0.5441 1.3897 -0.3915 0.6965 
R2 0.9966    
Adj. R2 0.9953    

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

Table 8. The result of the diagnostic test. 

Diagnostic tests 
CO2 Model EFP Model 

Decision 
Coeff. Prob. Coeff. Prob. 

R2 > 0.9993 - > 0.9988 - The model is well fitted 
Adj. R2 > 0.9993 - > 0.9987 - The model is well fitted 
CUSUM - < 0.05 - < 0.05 The model is stable 
B-G LM test 3.2100 0.0762 3.5701 0.0617 No serial correlation exists 
Harvey test 1.6308 0.1011 1.1889 0.3012 No heteroscedasticity exists 
ARCH test 0.1105 0.7402 0.0030 0.9562 No heteroscedasticity exists 
Ramsey test 1.7175 0.1848 0.3591 0.7203 The model is properly specified 

Note: B-G refers to the Breusch-Godfrey test, and ARCH refers to the Autoregressive Conditional Heteroskedasticity test. 
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Figure 5. The parameters stability test with CUSUM for CO2 model (a) and EFP model (b). 
 
adjusted R2 values, each exceeding 0.99, indicate an 
excellent model fit, suggesting that the independent 
variables explain nearly all variations in the dependent 
variables. The CUSUM test results, illustrated in Figure 5a-
b, confirm the stability of both models over time. The 
Breusch-Godfrey (B-G LM) test shows no evidence of 
serial correlation, while the Harvey and ARCH tests 
indicate the absence of heteroscedasticity in both 
models. Additionally, the Ramsey RESET test verifies that 

the models are correctly specified, with no major 
functional form misspecifications. Overall, these 
diagnostic checks validate the reliability and consistency 
of the ARDL estimation results applied in this study. 

3.8. Granger Causality Test 

The Granger causality test results presented in Table 9 
reveal several directional relationships among the 
variables in both the CO2 and EFP models. In the CO2  
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Table 9. Granger causality test results. 

CO2 model   EFP model   
Null Hypothesis F-Stat. Prob.  Null Hypothesis F-Stat. Prob.  
ND does not Granger Cause CO2 0.5495 0.5788 ND does not Granger Cause EFP 1.0890 0.3402 
CO2 does not Granger Cause ND 4.9142*** 0.0090 EFP does not Granger Cause ND 3.9455** 0.0222 
FF does not Granger Cause CO2 1.1152 0.3316 FF does not Granger Cause EFP 2.0106 0.1388 
CO2 does not Granger Cause FF 1.0970 0.3375 EFP does not Granger Cause FF 1.1474 0.3213 
RE does not Granger Cause CO2 1.3218 0.2709 RE does not Granger Cause EFP 0.4766 0.6222 
CO2 does not Granger Cause RE 2.4622* 0.0900 EFP does not Granger Cause RE 5.2795*** 0.0065 
GDP does not Granger Cause CO2 4.1335** 0.0186 GDP does not Granger Cause EFP 5.1137*** 0.0075 
CO2 does not Granger Cause GDP 0.0289 0.9715 EFP does not Granger Cause GDP 0.5801 0.5616 
CF does not Granger Cause CO2 1.4433 0.2406 CF does not Granger Cause EFP 2.0216 0.1374 
CO2 does not Granger Cause CF 4.7896** 0.0101 EFP does not Granger Cause CF 2.1284 0.1239 

Note: *, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively. 

 

Figure 6. overview of Granger causality test results. 
 
model, unidirectional causality is found running from CO2 
emissions to natural disasters. Additionally, there is 
evidence of causality from GDP to CO2 emissions, from 
CO2 emissions to renewable energy, and from CO2 
emissions to capital formation. Furthermore, in the EFP 
model, unidirectional causality is identified from the 
ecological footprint to natural disasters, from the 
ecological footprint to renewable energy, and from GDP 
to the ecological footprint. An overview of the Granger 
causality is visualized in Figure 6. 

3.9. Discussion 

This study identifies various impacts of natural disasters, 
fossil fuels, renewable energy, economic growth, and 
capital formation on environmental indicators, 
specifically CO2 emissions and the ecological footprint. An 
overview of the long-run impacts is presented and 
visualized in Figure 7. 

Based on the ARDL results, it is evident that, in the long 
run, natural disasters exert a positive influence on CO2 
emissions, suggesting they contribute to an upward 
trend in emissions over time. This relationship can be 
attributed to the context of Indonesia, where natural 
disasters frequently trigger intensive reconstruction 
processes that rely heavily on fossil fuels and carbon-
intensive sectors such as construction, transportation, 
and energy production. These sectors become 
increasingly active during recovery phases, leading to 
higher emissions. Moreover, the limited integration of 
green technologies and sustainable practices in post-
disaster rebuilding efforts may further intensify 
environmental degradation in the long term. However, 
this result is only significant at the 10% level, indicating a 
relatively weak statistical relationship. This weak 
significance may be due to the variability in the scale and 
frequency of natural disasters over time, as not all  
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Figure 7. Graphical results of long-term impact for CO2 and EFP model. 
 
disasters have the same impact on infrastructure, energy 
demand, or recovery duration. Additionally, improved 
disaster response mechanisms and international aid in 
recent years may have mitigated some of the long-term 
environmental consequences, leading to more mixed 
outcomes. As such, while natural disasters do contribute 
to increased CO2 emissions, their impact appears to be 
context-dependent and less consistent compared to 
other drivers such as fossil fuel use or economic growth. 
These findings are consistent with those of Cao et al. [19], 
Idroes et al. [39] and Doytch & Klein [38], who observed 
similar patterns in disaster-affected regions. 

In addition to their effect on emissions, natural disasters 
also impact the ecological footprint. Although the long-
run relationship is positive, it is statistically insignificant, 
indicating that their long-term environmental effect may 
lessen as recovery stabilizes. In contrast, the short-run 
impact is both significant and positive, suggesting that 
disasters impose immediate ecological pressure through 
increased resource consumption, waste generation, and 
disruption of sustainable practices. The lack of 
significance in the long run may be attributed to effective 
recovery mechanisms, policy interventions, and natural 
regeneration processes that help mitigate prolonged 
ecological burdens. 

Shifting to the energy dimension, the influence of fossil 
fuel consumption on environmental quality is both 
substantial and persistent. The results indicate that fossil 
fuels have a statistically significant positive effect on CO2 
emissions, meaning they increase atmospheric CO2 levels 
in both the short and long run, reaffirming their critical 
role in greenhouse gas accumulation. However, their 
impact on the ecological footprint is statistically 

insignificant in the long run, likely due to the broader 
scope of the footprint metric, which encompasses factors 
beyond emissions, such as land use, water consumption, 
and waste production. This finding highlights the 
complexity of environmental degradation and reinforces 
the need to consider multi-dimensional environmental 
indicators. These results are consistent with those of Pata 
[42], Acaroğlu et al. [41], Idroes et al. [43] and 
Ehigiamusoe et al. [44], who emphasized the 
differentiated environmental effects of fossil fuel use. 

In contrast, the long-run results show that renewable 
energy consumption contributes to a reduction in both 
CO2 emissions and the ecological footprint, underlining 
its importance in promoting environmental 
sustainability. The increased adoption of renewable 
sources such as solar, wind, hydro, and bioenergy reduce 
dependency on fossil fuels and contributes to a decline in 
emissions over time. Additionally, renewable energy 
technologies tend to have lower environmental impacts 
in terms of land use, water usage, and waste generation, 
collectively easing ecological pressure. These findings 
support the broader view that renewable energy not only 
mitigates pollution but also enhances ecological 
resilience. They are in line with the results reported by 
Waheed et al. [45], Pata [42], Kuldasheva & Salahodjaev 
[46], Sahoo et al. [47], Ehigiamusoe et al. [44], Idroes et al. 
[43] and Liu et al. [48]. 

Alongside energy consumption, economic growth 
represented by GDP also emerges as a key driver of 
environmental change. The findings show that GDP has a 
positive long-run effect on both CO2 emissions and the 
ecological footprint, indicating the environmental trade-
offs associated with sustained economic development. In 
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Indonesia, economic expansion is typically accompanied 
by intensified industrial activity, increased energy 
demand, and rapid infrastructure growth, all of which 
contribute to environmental degradation. These 
development processes, often concentrated in urban and 
industrial zones, exert significant pressure on natural 
resources and ecosystems. While GDP shows varying 
effects in the short run, possibly influenced by temporary 
fluctuations, policy measures, or shifts in consumption, 
the long-term trend highlights a clear conflict between 
growth and environmental sustainability. These findings 
are consistent with those of Nathaniel & Khan [82], 
Ehigiamusoe et al. [44], Idroes et al. [43], Ansari [58] and 
Maulidar et al. [57], who documented similar patterns in 
other developing economies. 

Furthermore, capital formation, on the other hand, 
presents a contrasting trend, offering potential for long-
term environmental improvement. The results indicate 
that capital formation has a negative relationship with 
environmental degradation in the long run, particularly 
through its significant negative impact on the ecological 
footprint, although its effect on CO2 emissions is 
statistically insignificant. This suggests that investments 
in infrastructure, technology, and productive capacity, 
especially when directed toward sustainable and energy-
efficient systems, can enhance environmental 
performance. Over time, such investments can support 
the transition toward cleaner production and more 
sustainable consumption patterns. These findings imply 
that capital formation, when aligned with green 
development goals, may play a transformative role in 
reducing long-term ecological pressures. Similar 
conclusions were drawn by Maulidar et al. [57] and Idroes 
et al. [83], who emphasized the environmental benefits of 
sustainability-oriented capital investments. 

Finally, the Granger causality results indicate that CO2 
emissions predict natural disasters, renewable energy 
consumption, and capital formation, while GDP predicts 
both CO2 emissions and ecological footprint. Similarly, 
the ecological footprint predicts natural disasters and 
renewable energy consumption. These findings suggest 
that environmental degradation can drive changes in 
disaster risk, energy transition, and investment, while 
economic growth remains a key determinant of 
environmental outcomes, highlighting the need for 
policies that promote sustainable development. 

4. Conclusions and Policy Recommendations 

This study investigates the dynamic impact of natural 
disasters, fossil fuels, renewable energy, economic 
growth, and capital formation on environmental quality 
in Indonesia over the period 1965 to 2022 using the ARDL 

model. Environmental quality is measured through two 
key indicators: CO2 emissions and the ecological 
footprint. The results reveal varying impacts in the short 
run and long run. In the long run, natural disasters, fossil 
fuels, and economic growth tend to contribute to 
environmental degradation, while renewable energy and 
capital formation show potential in improving 
environmental quality. In the short run, some variables 
such as economic growth and natural disasters exhibit 
dynamic effects, particularly on the ecological footprint. 
Furthermore, unidirectional causality is found running 
from CO2 emissions and ecological footprint to natural 
disasters and renewable energy. In addition, 
unidirectional causality is also observed from economic 
growth to both CO2 emissions and ecological footprint. 

Based on the findings of this study, several policy 
recommendations are proposed to support Indonesia’s 
transition toward environmental sustainability. 
Integrating environmentally conscious strategies into 
disaster recovery and reconstruction is essential, with an 
emphasis on using low-carbon materials, renewable 
energy, and sustainable infrastructure to minimize 
environmental pressures during post-disaster 
development. Efforts should also focus on accelerating 
the shift from fossil fuels to renewable energy through 
targeted incentives, the removal of fossil fuel subsidies, 
and support for clean energy innovation. To ensure that 
economic growth does not come at the expense of 
environmental health, national development planning 
should prioritize sustainable economic models by 
promoting green industries, strengthening 
environmental regulations, and encouraging resource-
efficient practices. 

Additionally, capital formation should be directed toward 
investments in clean technologies, energy-efficient 
infrastructure, and sustainable industrial systems that 
can help reduce environmental degradation over time. 
Enhancing environmental resilience is necessary, 
particularly by improving disaster preparedness, 
managing resource use efficiently during emergencies, 
and deploying environmentally sound technologies in 
response efforts. Furthermore, robust environmental 
governance is needed through improved data 
monitoring, inter-agency coordination, and transparent 
reporting to support evidence-based policymaking. 
Finally, increasing public awareness through education 
and outreach can foster sustainable consumption and 
behavioral change, encouraging collective responsibility 
for environmental protection. These integrated strategies 
can help Indonesia achieve a balanced approach to 
economic development and environmental 
sustainability. 
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5. Limitations and Opportunities for Further 
Research 

While this study provides meaningful insights into the 
long- and short-run impacts of natural disasters, fossil 
fuel consumption, renewable energy consumption, 
economic growth, and capital formation on 
environmental quality in Indonesia, it is not without 
limitations. The analysis relies on CO2 emissions and the 
ecological footprint as proxies for environmental 
degradation, which, although widely accepted, may not 
capture other critical dimensions such as deforestation, 
air and water pollution, or biodiversity loss. Additionally, 
the use of total deaths to represent the impact of natural 
disasters may not fully reflect their economic or 
environmental severity. The ARDL model, though suitable 
for mixed-order integration and small samples, is 
inherently linear and may not fully capture asymmetric or 
distributional effects across different levels of 
environmental indicators. Future research should 
consider incorporating additional environmental 
variables that offer a more holistic view of degradation 
and sustainability. Moreover, the adoption of more 
advanced and robust econometric techniques, such as 
Quantile Regression (QR), Vector Error Correction Models 
(VECM) or Nonlinear ARDL would provide deeper insights 
into heterogeneous impacts and improve the robustness 
of empirical findings. Expanding the scope to regional or 
sectoral analyses within Indonesia or conducting 
comparative studies across countries in Southeast Asia 
could further enrich the understanding of context-
specific environmental dynamics and inform more 
targeted policy interventions. 
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