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Abstract 
 
This study aims to improve the accuracy of energy consumption prediction in the 
Indonesia-Malaysia-Thailand Growth Triangle (IMT-GT) region by addressing 
multicollinearity among independent variables such as energy production (Mtoe), lignite 
coal production (million tons), crude oil production (million tons), refined oil production 
(million tons), natural gas production (billion cubic meters), and electricity production 
(terawatt-hours). By integrating Principal Component Analysis (PCA) with Random Forest 
(RF), six correlated variables were reduced into two uncorrelated principal components 
(PC1 and PC2), explaining 80.77% of the data variance. The PCA-RF hybrid model 
outperformed the standalone Random Forest (RF) model, with an increase in the 
coefficient of determination (R2) from 0.976 to 0.993. Additionally, it achieved significant 
reductions in error metrics, with the mean absolute error (MAE) decreasing from 5.811 to 
4.169 and the root mean square error (RMSE) dropping from 9.278 to 4.786. These results 
demonstrate PCA’s effectiveness in isolating dominant drivers such as energy and lignite 
coal production while improving model stability. The framework provides policymakers 
with a reliable tool to forecast energy demand and align economic growth with 
sustainability in fossil fuel-dependent economies. 
 

 

Copyright: © 2025 by the authors. This is an open-access article distributed under the 
terms of the Creative Commons Attribution-NonCommercial 4.0 International License. 
(https://creativecommons.org/licenses/by-nc/4.0/) 

1. Introduction 

Cooperation between countries is important to achieving 
common goals in various fields, especially in supporting 
economic growth [1]. Through such cooperation, 
countries can help each other face challenges that are not 
easily resolved independently. As a form of regional 
synergy, Indonesia, Malaysia, and Thailand formed an 
economic cooperation known as the Indonesia-Malaysia-
Thailand Growth Triangle (IMT-GT). IMT-GT cooperation 
has shown significant growth in recent years, especially 

in the investment, economic, and infrastructure 
development sectors. However, along with this growth, 
new challenges have emerged related to increased 
energy consumption in the three countries [2]. Economic 
growth and industrial expansion in the region have the 
potential to put pressure on environmental sustainability 
and a stable energy supply. Rapid economic growth and 
increased industrial activities may lead to changes in 
energy consumption [3]. Therefore, efforts should be 
made to optimize energy consumption predictions to 
more effectively anticipate future energy needs. 
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Increasing energy consumption in developing countries, 
such as Indonesia, Malaysia, and Thailand, generally goes 
hand in hand with industrialization and urbanization. 
Energy consumption in these regions is highly correlated 
with the rate of economic growth and industrial sector 
activity [4]. On the other hand, the high dependence on 
fossil energy, such as coal and petroleum, poses energy 
efficiency and sustainability challenges. An accurate and 
comprehensive data-driven analytical approach is 
needed to understand and map the complex dynamics 
between the various factors that influence energy 
consumption at the regional level. 

The Indonesia-Malaysia-Thailand Growth Triangle (IMT-
GT), established in 1993, represents a strategic economic 
collaboration aimed at accelerating regional 
development through cross-border industrialization, 
infrastructure expansion, and trade integration [5]. Over 
the past decade, the IMT-GT has witnessed 
unprecedented economic growth, with GDP 
contributions from the three nations rising by an average 
of 5.2% annually [6]. However, this rapid industrialization 
and urbanization have intensified energy consumption, 
driven by sectors such as manufacturing, transportation, 
and utilities. For instance, Thailand’s energy demand 
surged by 28% between 2015 and 2022, while Indonesia 
and Malaysia reported similar trends, with fossil fuels 
accounting for over 75% of their energy mix [7]. This 
dependency raises critical concerns about environmental 
sustainability, energy security, and the feasibility of 
achieving net-zero emissions targets by 2050 [8]. 

Accurate energy consumption prediction is pivotal for 
balancing economic growth with sustainable resource 
management. However, the IMT-GT’s energy landscape is 
characterized by complex interdependencies among 
variables such as lignite coal production, natural gas 
output, and electricity generation, which exhibit strong 
multicollinearity [9]. Traditional prediction models and 
standalone machine learning algorithms, often fail to 
account for these collinear relationships, resulting in 
overfitting and reduced generalizability. Recent studies 
highlight that oversights in handling multicollinearity can 
inflate prediction errors by up to 30% in energy systems, 
underscoring the need for advanced methodologies 
tailored to the region’s unique dynamics [10]. 

Machine learning (ML) models, particularly Random 
Forest (RF), have gained traction in energy forecasting 
due to their ability to capture non-linear relationships 
and handle heterogeneous datasets [11]. For example, 
Zhang et al. applied RF to predict urban energy demand 
in Southeast Asia, achieving a mean absolute error (MAE) 
of 8.2% [12]. Similarly, Joo et al. utilized RF to model 
industrial energy consumption in Vietnam, 

demonstrating its superiority over regression-based 
approaches. Despite these advancements, a critical 
limitation persists: RF’s performance deteriorates when 
input variables are highly correlated, as it prioritizes 
redundant features during tree construction, thereby 
obscuring dominant drivers [13, 14]. 

The primary challenge in IMT-GT energy modeling lies in 
disentangling multicollinear variables to isolate their 
individual and collective impacts on consumption 
patterns. Conventional ML approaches, including 
standalone RF, inadequately address this complexity, 
leading to biased estimates and unreliable policy 
recommendations. To bridge this gap, dimensionality 
reduction techniques like Principal Component Analysis 
(PCA) offer a robust solution. PCA transforms correlated 
variables into orthogonal principal components (PCs), 
preserving >95% of data variance while eliminating 
redundancy. When integrated with RF, PCA enhances 
model interpretability and stability by distilling 
multicollinear datasets into uncorrelated inputs, thereby 
mitigating overfitting risks [15]. 

Recent studies demonstrate the efficacy of hybrid PCA-
ML frameworks in energy forecasting. For instance, Sun 
et al. combined PCA with gradient-boosted trees to 
predict residential energy use in China, reducing 
prediction errors by 22% compared to baseline models 
[16]. Similarly, Testasecca et al. applied a hybrid model 
combining PCA with Long Short-Term Memory (LSTM) 
networks to forecast renewable energy generation in 
India, resulting in an improvement in forecasting 
accuracy. The application of PCA prior to LSTM helps 
reduce dimensionality while preserving relevant 
information, which is crucial for improving model 
performance in time-series forecasting [17]. These 
successes highlight PCA’s versatility in enhancing ML 
models, yet its application remains unexplored in the 
IMT-GT context. This study adapts this hybrid approach 
to address the region’s unique energy dynamics, where 
cross-border industrial synergies and fossil fuel 
dependencies amplify variable correlations. 

This study aims to optimize the prediction of energy 
consumption in the IMT-GT region by integrating PCA 
with RF to overcome multicollinearity. It is hypothesized 
that PCA-based dimensionality reduction will significantly 
improve the accuracy of RF by isolating the dominant 
drivers. The novelty of this study introduces a novel 
integration of PCA with RF to explicitly address 
multicollinearity in energy consumption prediction - a 
critical gap in previous studies. Unlike conventional 
approaches that apply RF in isolation, the PCA-based 
framework transforms correlated variables into 
orthogonal principal components, thus eliminating 
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redundancy while retaining important information. This 
approach not only advances methodological rigor, but 
also supports sustainable energy planning in developing 
countries. 

2. Materials and Methods 

2.1. Data Descriptions 

The data used in this study is secondary data sourced 
from the World Energy & Climate Statistics - Yearbook 
2023 publication. This publication includes data on 
various energy and climate elements, such as 
consumption, production, emissions, efficiency, and 
energy technologies across countries and regions. This 
information can be used to analyze and compare global 
energy and climate trends and conditions and to develop 
policies and strategies aligned with sustainable 
development goals. The data used in this study focuses 
on energy consumption in the IMT-GT region, namely 
Indonesia, Malaysia, and Thailand. The data is analyzed 
using the PCA method to address the issue of 
multicollinearity among the independent variables. 

This study uses seven variables, consisting of one 
dependent variable and six independent variables. The 
dependent variable is energy consumption, which is 
measured in million tons of oil equivalent (Mtoe). The 
independent variables include energy production (Mtoe), 
lignite coal production (million tons), crude oil production 
(million tons), refined oil production (million tons), 
natural gas production (billion cubic meters), and 
electricity production (terawatt-hours). 

2.2. Data Preprocessing 

2.2.1. Energy Consumption 

Energy consumption is the amount of energy used or 
utilized by an activity, sector, or region within a certain 
period; energy consumption also impacts the 
environment, health, and welfare [18]. The role of energy 
is crucial to the advancement of society in an era of ever-
evolving industry and technology. Human productivity in 
the workplace is increasing thanks to technological 
advancements, which drive economic growth [19]. Energy 
is essential for running various economic activities, such 
as meeting daily consumption needs and supporting 
various production processes. Energy management must 
be done responsibly based on the principle of sustainable 
development, as energy is an irreplaceable natural 
resource [20]. To maximize its benefits for society's 
overall prosperity, energy must be utilized to maintain 
sustainability and natural balance. 

A country's economic development is highly dependent 
on energy consumption. The main reasons for the 

increase in energy demand are rapid population growth, 
changing lifestyles, increasing production sectors, and 
fierce economic competition [21]. In such a situation, 
energy sources such as oil, coal, and electricity are 
essential to fulfill energy needs and support the dynamics 
of a growing economy. Coal plays an important role in 
heavy industry, while oil is essential to transportation and 
mobility. In addition, electricity, which is increasingly 
turning to renewable sources, serves as the backbone for 
various sectors of the economy. Therefore, to foster 
sustainable economic growth, management and 
optimization of various energy resources is essential [22]. 

2.2.2. IMT-GT region 

The Indonesia, Malaysia, and Thailand Growth Triangle 
(IMT-GT) is a regional economic cooperation program 
under ASEAN. This subregional economic cooperation 
program was established on July 20, 1993, at the 
Ministerial Meeting (PTM) held in Langkawi, Malaysia. The 
purpose of establishing IMT-GT is to accelerate the 
economic transformation of member countries and 
provinces in the three countries by complementing each 
other's basic needs and utilizing their comparative 
advantages. Since its establishment, IMT-GT has 
expanded its geographical scope to 32 provinces and 
three countries; 10 provinces in Indonesia, eight states in 
western Malaysia, and 14 Thailand have become 
members [23]. Due to the many connections, including 
geographical, historical, cultural, and linguistic links, the 
member countries and provinces are well suited to 
cooperate in the economy. 

The seven key areas of IMT-GT cooperation include 
tourism, trade and investment, transportation, 
agriculture, environment, human resources, and halal 
cooperation [24]. In this area, increased cooperation 
directly impacts energy consumption and production. 
Measures to improve efficiency and sustainability in 
energy consumption are necessary to ensure that rapid 
economic development does not negatively impact the 
environment [25]. 

Increased economic activity in tourism, trade, and 
investment will increase energy consumption, including 
oil, coal, and electricity. Therefore, it is necessary to focus 
on diversifying energy sources towards more sustainable 
ones, such as using renewable energy, developing green 
technologies, and implementing policies that support 
energy efficiency. These steps are taken wisely to ensure 
economic growth provides economic benefits while 
contributing to environmental preservation in the IMT-GT 
region [26]. 
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2.2.3. Random Forest (RF) 

RF is a development of the Classification and Regression 
Tree (CART) method that applies random feature 
selection and bootstrap aggregating or bagging [27, 28]. 
The final class prediction in the RF algorithm uses the 
prediction results of each tree combined or aggregated. 
From the collection of predictions, the most votes are 
selected in the class category, which often appears as a 
prediction of the classification tree (majority voting). The 
classification results are influenced by the adjustment of 
model parameters commonly known as 
hyperparameters. Different hyperparameter values 
result in different model parameter values for a given 
data set. 

2.2.4. Principal Component Analysis 

PCA is an analytical method that was first discovered in 
1901 by Karl Pearson. PCA is used to simplify data by 
transforming data into linear to produce a new 
coordinate system with maximum variance [29]. PCA is an 
analysis that aims to reduce the dimensions of data that 
are multicollinear to data dimensions that are not 
multicollinear without significantly reducing their 
characteristics [30].  

Multicollinearity is a situation with a strong correlation or 
relationship between independent variables. 
Multicollinearity can occur when the correlation 
coefficient is close to one or greater than 0.75 [31]. The 
correlation coefficient can be calculated using the 
Pearson correlation formula, which is as shown in 
Equation 1: 

𝑟𝑋𝑗𝑋𝑙
=

𝑛 ∑ ∑ 𝑋𝑗
𝑛
𝑙=1 𝑋𝑙 − ∑ 𝑋𝑗

𝑛
𝑗=1 ∑ 𝑋𝑙

𝑛
𝑙=1

𝑛
𝑗=1

√𝑛 ∑ 𝑋𝑗
2 − (∑ 𝑋𝑗

𝑛
𝑗=1 )

2𝑛
𝑗=1 √𝑛 ∑ 𝑋𝑙

2 − (∑ 𝑋𝑙
𝑛
𝑙=1 )2𝑛

𝑙=1

 
(1) 

Where 𝑛 refers to the number of observations, 𝑋𝑗 and 𝑋𝑙 
are the 𝑗-th and the 𝑙-th variables, respectively, and 𝑘 is 
the total number of variables.  

Several strategies can be applied to address 
multicollinearity, including removing highly correlated 
independent variables, adding additional data to improve 
variability and reduce correlation, transforming the 
variables to alter their relationships, or applying PCA, 
which converts the original correlated variables into a 
new set of uncorrelated principal components [32]. This 
process involves several key stages: preparing and 
standardizing the data, computing the variance-
covariance matrix, extracting eigenvalues and 
eigenvectors, determining the proportion of variance 
explained, and calculating principal component scores. 

 

2.2.4.1. Data Preparation 

There are two data preparation processes: data cleaning 
and data standardization. Data cleaning eliminates 
incomplete and accurate data to produce quality data 
[33]. Data standardization is done to ensure that each 
variable contributes equally to the analysis results [34]. 
Data standardization can be calculated using the Z-score 
method, as shown in Equation 2: 

𝑍𝑖𝑗 =
(𝑋𝑖𝑗 − µ𝑗)

𝜎𝑗
 (2) 

Where 𝑋𝑖𝑗 refers to the original value of the 𝑖-th 
observation for the 𝑗-th variable, µ𝑗 is the mean of the j-
th variable, and 𝜎𝑗 denotes the standard deviation 
associated with that variable. This transformation allows 
each variable to be centered around zero with a standard 
deviation of one, facilitating comparison across variables 
measured on different scales. 

2.2.4.2. Variance-Covariance Matrix Calculation 

Variance is calculated to assess the spread or dispersion 
of data in a study, while the covariance matrix represents 
the covariances between pairs of variables, with each cell 
in the matrix containing a covariance value derived from 
the sample data [35]. The variance is computed using the 
Equation 3: 

𝑉𝑎𝑟(𝑥) =  𝜎2 =
1

𝑛
∑(𝑍𝑖𝑗 − 𝜇𝑗)

2
𝑛

𝑖=1

 (3) 

This measures the average squared deviation of 
standardized values from their mean. Meanwhile, the 
covariance between two variables is calculated using 
Equation 4: 

𝐶𝑜𝑣(𝑥, 𝑦) =
1

𝑛 − 1
∑(𝑥𝑖𝑗 − 𝜇𝑥𝑗)(𝑦𝑖𝑗 − 𝜇𝑦𝑗)

𝑛

𝑖=1

 (4) 

Where 𝜇𝑥 and 𝜇𝑦  refers to sample means of variables 𝑥 
and 𝑦 respectively and 𝑥𝑖 and 𝑦𝑖 i-th observation value of 
𝑥 and 𝑦 variables 

2.2.4.3. Eigenvalue and Eigenvector Calculation 

To identify the principal components, calculate the 
eigenvalues (𝜆) and eigenvectors (𝑣) of the variance-
covariance matrix (R). The eigenvalues are determined by 
solving the characteristic equation, as shown in Equation 
5: 

𝑑𝑒𝑡 (𝑅 –  𝜆𝐼)  =  0 (5) 

For each eigenvalue, the corresponding eigenvector 
satisfies the Equation 6: 
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𝑅𝑣 =  𝜆𝑣 (6) 

2.2.4.4. Proportion of Principal Components 

The proportion of variance explained by each principal 
component (PC) is calculated as shown in Equation 7: 

𝑃𝐶(%) =
𝐸𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒

𝑇𝑜𝑡𝑎𝑙 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒
× 100% (7) 

This value helps determine how much of the total dataset 
variability is captured by each component. 

2.2.4.5. Principal Component Scores 

Once significant principal components are selected 
(typically those with eigenvalues greater than one), 
calculate the principal component scores for each 
observation. This is done by projecting the standardized 
data onto the eigenvectors, as shown in Equation 8: 

𝐴𝑗 = 𝑣𝑗
′𝑍𝑗  (8) 

Where 𝑣𝑗
′is the transpose of the j-th eigenvector of the 

covariance matrix 𝑆, and 𝑍 is the vector of standardized 
variables. This transformation is a key step in PCA, which 
aims to reduce a dataset's dimensionality while retaining 
most of the original variability.  

2.2.4.6 Selecting the Number of Principal Components 

The number of principal components (PC) can be 
determined in three ways: principal components with 
more than one eigenvalue, principal components with a 
total variance value obtained of more than 80%, and the 
number of major components by looking at the fracture 
at the elbow of the scree plot [36]. However, some 
experts recommend choosing principal components with 
an eigenvalue greater than one. This is because the 
explained diversity of the data will be reduced if the 
eigenvalue is less than one. 

3. Results and Discussion 

3.1. Descriptive Statistics 

Table 1 summarizes descriptive statistics of the variables 
related to energy production and consumption in the 
IMT-GT cooperation region, including the minimum 
value, first quartile (Q1), median, mean value, third 
quartile (Q3), and maximum value. These variables 
include energy production, lignite coal production, crude 
oil production, refined oil production, natural gas 
production, electricity production, and energy 
consumption. The descriptive analysis provides an 
overview of the central tendency and dispersion of the 
data, helping to identify patterns, outliers, and potential 
data inconsistencies. For instance, variables with large 
gaps between the minimum and maximum values may 

indicate significant variability among countries or time 
periods. 

Table 1 shows that Energy Production has the highest 
average of 150.4 and a wide range of values, from 27 to 
470, indicating high variability. Similarly, Lignite Coal 
Production has a minimum value of 0 and a maximum of 
601, with an average of 89.88 but a median of only 18, 
indicating a highly skewed distribution to the right. In 
contrast, Crude Oil and Refined Oil Production shows a 
more balanced distribution, indicated by relatively close 
mean and median values and a narrow interquartile 
range, signaling the stability of production in the 
category. 

Meanwhile, Natural Gas Production has a median (56) 
slightly higher than the mean (48.74), indicating a mild 
negative distribution trend. Electricity Production 
displays a high average (124.43) with a wide range, 
indicating large fluctuations in electricity production. On 
the consumption side, Energy Consumption has a mean 
of 110.8 and a median of 99.5, with a third quartile of 
139.2, indicating that the energy consumption pattern is 
also quite varied. In comparison, energy production is 
generally higher than consumption, which may indicate 
potential energy exports or inefficiencies in energy 
distribution and utilization. 

3.2. Multicollinearity Detection 

Multicollinearity testing uses Pearson correlation, where 
if the correlation value between independent variables is 
more than 0.75, a multicollinearity problem in the data 
can be assumed. The following is a correlation matrix or 
covariance variance matrix shown in Figure 1. 

The matrix shows a high correlation between the energy 
production variable and lignite coal production, which is 
0.92. So, it can be concluded that there is a 
multicollinearity problem in this study data because the 
Pearson correlation value between several independent 
variables is more than 0.75. So, it is necessary to take 
further action to overcome the multicollinearity problem 
in this study data using PCA. 

3.3 Principal Component Analysis (PCA) 

Before conducting the PCA, all independent variables 
were standardized to ensure comparability, as they were 
originally measured on different scales. The standardized 
variables are denoted as follows: Z1 represents Energy 
Production, Z2 represents Lignite Coal Production, Z3 
represents Crude Oil Production, Z4 represents Refined 
Oil Production, Z5 represents Natural Gas Production, 
and Z6 represents Electricity Production. 
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Table 1. Descriptive statistics of energy-related variables in the IMT-GT region. 

Variables Min Q1 Median Mean Q3 Max 
Energy Production 27 64 88 150.4 228.2 470 
Lignite Coal Production 0 2.75 18 89.88 56.5 601 
Crude Oil Production 3 17.75 33 33.94 41.25 81 
Refined Oil Production 10 24 42 37.54 49 65 
Natural Gas Production 6 27 56 48.74 70 86 
Electricity Production 23 73.25 118.5 124.43 170 309 
Energy Consumption 21 69 99.5 110.8 139.2 241 

 

Figure 1. Correlation matrix of independent variables. 

Table 2. Results of principal component analysis. 

Variables 
Key Components 

PC1 PC2 PC3 PC4 PC5 PC6 
Z1 0.5232 0.0636 0.1761 -0.3382 -0.1818 0.7374 
Z2 0.4735 -0.1962 0.4016 -0.4249 -0.0638 -0.6256 
Z3 0.2918 0.6511 -0.2915 -0.1645 0.6037 -0.1202 
Z4 0.3026 -0.3337 -0.8435 -0.1208 -0.2466 -0.1007 
Z5 0.4206 0.3994 0.0553 0.6471 -0.4637 -0.1636 
Z6 0.3853 -0.5125 0.0902 0.4946 0.568 0.1162 
Eigenvalue 3.3841 1.4619 0.7289 0.3679 0.0551 0.0021 
Variance Proportion 0.5640 0.2436 0.1215 0.0613 0.0092 0.0004 
Cumulative Proportion of Variance 0.5640 0.8077 0.9292 0.9905 0.9996 1 

 
In this study, the Kaiser criterion, which considers 
eigenvalues that are more than one, is used to determine 
the number of main components. Based on Table 2, only 
two principal components, PC1 and PC2, meet these 
criteria. This shows that the first two principal 
components are sufficient to represent most of the 
information from the original data. 

Table 2 shows two main components whose eigenvalue 
is more than one; PC1 has an eigenvalue of 3.3841 with a 
proportion of variance of 56.40%, while PC2 has an 
eigenvalue of 1.4619 with a proportion of variance of 
24.36%. The two main components have a cumulative 

variance proportion of 80.77%; this means that PC1 and 
PC2 can explain 80.77% of the data diversity of the six 
independent variables. The equation obtained to 
calculate the score of the selected main component are 
shown in Equation 9 and Equation 10: 

𝑃𝐶1 =  0.5232𝑍1 +  0.4735𝑍2 +  0.2918𝑍3 
+  0.3026𝑍4 +  0.4206𝑍5 
+  0.3853𝑍6 

(9) 

 
𝑃𝐶2 =  0.0636𝑍1 −  0.1962𝑍2 +  0.6511𝑍3 

−  0.3337𝑍4 +  0.3994𝑍5 
−  0.5125𝑍6 

(10) 
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Figure 2. Comparison of actual vs. predicted values for RF and PCA-RF models. 
 

Table 3. Comparison of RF and PCA-RF model evaluation. 

Evaluation Metrics RF PCA-RF 
MAE 5.811 4.169 
MSE 86.091 22.909 
RMSE 9.278 4.786 
R2 0.976 0.993 

3.4. Comparison of RF and PCA-RF Predictions 

Table 3 presents the results of evaluating model 
performance using several error metrics commonly used 
in regression analysis: MAE, Mean Squared Error (MSE), 
Root Mean Squared Error (RMSE), and coefficient of 
determination (R2). These four metrics measure the error 
rate and prediction accuracy of the two models being 
compared: the RF model and the PCA-RF model. 

Table 3 shows that the PCA-RF model has a lower MAE 
value than the RF model, which is 4.169 compared to 
5.811. The MSE value also decreases from 86.091 to 
22.909, and the RMSE value drops from 9.278 to 4.786. A 
high R2 value indicates that the model has a high level of 
accuracy. Table 3 shows that the PCA-RF model has a 
higher R2 value than the RF model, which is 0.993 
compared to 0.976. This result shows that the PCA-RF 
model has better prediction performance and is more 
accurate than the RF model without the application of 
PCA. 

Figure 2 presents a visualization of the prediction results 
against the actual values for the two models compared in 
this study, namely RF and PCA-RF. Each graph shows the 
scatter between the actual and predicted values 
produced by the models, with a 45-degree line as a 
reference to show perfect agreement between the two. 
This visualization aims to provide further insight into the 
predictive performance of the two models while 
supporting the quantitative analysis described in Table 3. 

Based on the scatterplot above, the RF model without 
applying PCA has shown quite good performance. 
However, after PCA is applied before the RF algorithm, 
the feature dimensions are effectively reduced to 
minimize the model complexity and potential 
multicollinearity. As a result, the model becomes simpler 
and more accurate than before. Visually, the prediction 
points on the scatterplot after the application of PCA look 
closer to the line, which indicates that the model 
predictions are getting closer to the actual values. This 
shows that applying PCA to the RF algorithm can improve 
the model's ability to capture intrinsic patterns in the 
data more efficiently and accurately. 

4. Conclusions 

Based on the results of the study, it can be concluded that 
there is a multicollinearity problem in energy 
consumption data in the IMT- GT cooperation area. To 
overcome this problem, the PCA method is used, which 
successfully reduces the data dimension into two main 
components (PC1 and PC2), which are cumulatively able 
to explain 80.77% of the data diversity. The model 
evaluation results show that the application of PCA can 
significantly improve the performance of the RF model. 
This is shown by the decrease in prediction error values: 
MAE from 5.811 to 4.169, MSE from 86.091 to 22.909, and 
RMSE from 9.278 to 4.786. In addition, the coefficient of 
determination (R2) increased from 0.976 to 0.993, 
indicating that the model with PCA has a more accurate 
prediction ability and can better explain the variability of 
energy consumption data than the model without PCA. 
Thus, the application of PCA in building an energy 
consumption prediction model proved effective in 
improving the accuracy and stability of the model. 
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