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Abstract

This study aims to improve the accuracy of energy consumption prediction in the
Indonesia-Malaysia-Thailand  Growth Triangle (IMT-GT) region by addressing
multicollinearity among independent variables such as energy production (Mtoe), lignite
coal production (million tons), crude oil production (million tons), refined oil production
(million tons), natural gas production (billion cubic meters), and electricity production
(terawatt-hours). By integrating Principal Component Analysis (PCA) with Random Forest
(RF), six correlated variables were reduced into two uncorrelated principal components
(PC1 and PC2), explaining 80.77% of the data variance. The PCA-RF hybrid model
outperformed the standalone Random Forest (RF) model, with an increase in the
coefficient of determination (R?) from 0.976 to 0.993. Additionally, it achieved significant
reductions in error metrics, with the mean absolute error (MAE) decreasing from 5.811 to
4.169 and the root mean square error (RMSE) dropping from 9.278 to 4.786. These results
demonstrate PCA's effectiveness in isolating dominant drivers such as energy and lignite
coal production while improving model stability. The framework provides policymakers
with a reliable tool to forecast energy demand and align economic growth with
sustainability in fossil fuel-dependent economies.
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1. Introduction

in the investment, economic, and infrastructure
development sectors. However, along with this growth,

Cooperation between countries is important to achieving
common goals in various fields, especially in supporting
economic growth [1]. Through such cooperation,
countries can help each other face challenges that are not
easily resolved independently. As a form of regional
synergy, Indonesia, Malaysia, and Thailand formed an
economic cooperation known as the Indonesia-Malaysia-
Thailand Growth Triangle (IMT-GT). IMT-GT cooperation
has shown significant growth in recent years, especially

DOI: 10.60084/ijds.v3i1.286

new challenges have emerged related to increased
energy consumption in the three countries [2]. Economic
growth and industrial expansion in the region have the
potential to put pressure on environmental sustainability
and a stable energy supply. Rapid economic growth and
increased industrial activities may lead to changes in
energy consumption [3]. Therefore, efforts should be
made to optimize energy consumption predictions to
more effectively anticipate future energy needs.
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Increasing energy consumption in developing countries,
such as Indonesia, Malaysia, and Thailand, generally goes
hand in hand with industrialization and urbanization.
Energy consumption in these regions is highly correlated
with the rate of economic growth and industrial sector
activity [4]. On the other hand, the high dependence on
fossil energy, such as coal and petroleum, poses energy
efficiency and sustainability challenges. An accurate and
comprehensive data-driven analytical approach is
needed to understand and map the complex dynamics
between the various factors that influence energy
consumption at the regional level.

The Indonesia-Malaysia-Thailand Growth Triangle (IMT-
GT), established in 1993, represents a strategic economic
collaboration  aimed at  accelerating regional
development through cross-border industrialization,
infrastructure expansion, and trade integration [5]. Over
the past decade, the IMT-GT has witnessed
unprecedented economic  growth, with  GDP
contributions from the three nations rising by an average
of 5.2% annually [6]. However, this rapid industrialization
and urbanization have intensified energy consumption,
driven by sectors such as manufacturing, transportation,
and utilities. For instance, Thailand’s energy demand
surged by 28% between 2015 and 2022, while Indonesia
and Malaysia reported similar trends, with fossil fuels
accounting for over 75% of their energy mix [7]. This
dependency raises critical concerns about environmental
sustainability, energy security, and the feasibility of
achieving net-zero emissions targets by 2050 [8].

Accurate energy consumption prediction is pivotal for
balancing economic growth with sustainable resource
management. However, the IMT-GT's energy landscape is
characterized by complex interdependencies among
variables such as lignite coal production, natural gas
output, and electricity generation, which exhibit strong
multicollinearity [9]. Traditional prediction models and
standalone machine learning algorithms, often fail to
account for these collinear relationships, resulting in
overfitting and reduced generalizability. Recent studies
highlight that oversights in handling multicollinearity can
inflate prediction errors by up to 30% in energy systems,
underscoring the need for advanced methodologies
tailored to the region’s unique dynamics [10].

Machine learning (ML) models, particularly Random
Forest (RF), have gained traction in energy forecasting
due to their ability to capture non-linear relationships
and handle heterogeneous datasets [11]. For example,
Zhang et al. applied RF to predict urban energy demand
in Southeast Asia, achieving a mean absolute error (MAE)
of 8.2% [12]. Similarly, Joo et al. utilized RF to model
industrial energy consumption in Vietnam,

demonstrating its superiority over regression-based
approaches. Despite these advancements, a critical
limitation persists: RF's performance deteriorates when
input variables are highly correlated, as it prioritizes
redundant features during tree construction, thereby
obscuring dominant drivers [13, 14].

The primary challenge in IMT-GT energy modeling lies in
disentangling multicollinear variables to isolate their
individual and collective impacts on consumption
patterns. Conventional ML approaches, including
standalone RF, inadequately address this complexity,
leading to biased estimates and unreliable policy
recommendations. To bridge this gap, dimensionality
reduction techniques like Principal Component Analysis
(PCA) offer a robust solution. PCA transforms correlated
variables into orthogonal principal components (PCs),
preserving >95% of data variance while eliminating
redundancy. When integrated with RF, PCA enhances
model interpretability and stability by distilling
multicollinear datasets into uncorrelated inputs, thereby
mitigating overfitting risks [15].

Recent studies demonstrate the efficacy of hybrid PCA-
ML frameworks in energy forecasting. For instance, Sun
et al. combined PCA with gradient-boosted trees to
predict residential energy use in China, reducing
prediction errors by 22% compared to baseline models
[16]. Similarly, Testasecca et al. applied a hybrid model
combining PCA with Long Short-Term Memory (LSTM)
networks to forecast renewable energy generation in
India, resulting in an improvement in forecasting
accuracy. The application of PCA prior to LSTM helps
reduce dimensionality while preserving relevant
information, which is crucial for improving model
performance in time-series forecasting [17]. These
successes highlight PCA's versatility in enhancing ML
models, yet its application remains unexplored in the
IMT-GT context. This study adapts this hybrid approach
to address the region’s unique energy dynamics, where
cross-border industrial synergies and fossil fuel
dependencies amplify variable correlations.

This study aims to optimize the prediction of energy
consumption in the IMT-GT region by integrating PCA
with RF to overcome multicollinearity. It is hypothesized
that PCA-based dimensionality reduction will significantly
improve the accuracy of RF by isolating the dominant
drivers. The novelty of this study introduces a novel
integration of PCA with RF to explicitly address
multicollinearity in energy consumption prediction - a
critical gap in previous studies. Unlike conventional
approaches that apply RF in isolation, the PCA-based
framework transforms correlated variables into
orthogonal principal components, thus eliminating
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redundancy while retaining important information. This
approach not only advances methodological rigor, but
also supports sustainable energy planning in developing
countries.

2. Materials and Methods
2.1. Data Descriptions

The data used in this study is secondary data sourced
from the World Energy & Climate Statistics - Yearbook
2023 publication. This publication includes data on
various energy and climate elements, such as
consumption, production, emissions, efficiency, and
energy technologies across countries and regions. This
information can be used to analyze and compare global
energy and climate trends and conditions and to develop
policies and strategies aligned with sustainable
development goals. The data used in this study focuses
on energy consumption in the IMT-GT region, namely
Indonesia, Malaysia, and Thailand. The data is analyzed
using the PCA method to address the issue of
multicollinearity among the independent variables.

This study uses seven variables, consisting of one
dependent variable and six independent variables. The
dependent variable is energy consumption, which is
measured in million tons of oil equivalent (Mtoe). The
independent variables include energy production (Mtoe),
lignite coal production (million tons), crude oil production
(million tons), refined oil production (million tons),
natural gas production (billion cubic meters), and
electricity production (terawatt-hours).

2.2. Data Preprocessing
2.2.1. Energy Consumption

Energy consumption is the amount of energy used or
utilized by an activity, sector, or region within a certain
period; energy consumption also impacts the
environment, health, and welfare [18]. The role of energy
is crucial to the advancement of society in an era of ever-
evolving industry and technology. Human productivity in
the workplace is increasing thanks to technological
advancements, which drive economic growth [19]. Energy
is essential for running various economic activities, such
as meeting daily consumption needs and supporting
various production processes. Energy management must
be done responsibly based on the principle of sustainable
development, as energy is an irreplaceable natural
resource [20]. To maximize its benefits for society's
overall prosperity, energy must be utilized to maintain
sustainability and natural balance.

A country's economic development is highly dependent
on energy consumption. The main reasons for the

increase in energy demand are rapid population growth,
changing lifestyles, increasing production sectors, and
fierce economic competition [21]. In such a situation,
energy sources such as oil, coal, and electricity are
essential to fulfill energy needs and support the dynamics
of a growing economy. Coal plays an important role in
heavy industry, while oil is essential to transportation and
mobility. In addition, electricity, which is increasingly
turning to renewable sources, serves as the backbone for
various sectors of the economy. Therefore, to foster
sustainable economic growth, management and
optimization of various energy resources is essential [22].

2.2.2. IMT-GT region

The Indonesia, Malaysia, and Thailand Growth Triangle
(IMT-GT) is a regional economic cooperation program
under ASEAN. This subregional economic cooperation
program was established on July 20, 1993, at the
Ministerial Meeting (PTM) held in Langkawi, Malaysia. The
purpose of establishing IMT-GT is to accelerate the
economic transformation of member countries and
provinces in the three countries by complementing each
other's basic needs and utilizing their comparative
advantages. Since its establishment, IMT-GT has
expanded its geographical scope to 32 provinces and
three countries; 10 provinces in Indonesia, eight states in
western Malaysia, and 14 Thailand have become
members [23]. Due to the many connections, including
geographical, historical, cultural, and linguistic links, the
member countries and provinces are well suited to
cooperate in the economy.

The seven key areas of IMT-GT cooperation include
tourism, trade and investment, transportation,
agriculture, environment, human resources, and halal
cooperation [24]. In this area, increased cooperation
directly impacts energy consumption and production.
Measures to improve efficiency and sustainability in
energy consumption are necessary to ensure that rapid
economic development does not negatively impact the
environment [25].

Increased economic activity in tourism, trade, and
investment will increase energy consumption, including
oil, coal, and electricity. Therefore, it is necessary to focus
on diversifying energy sources towards more sustainable
ones, such as using renewable energy, developing green
technologies, and implementing policies that support
energy efficiency. These steps are taken wisely to ensure
economic growth provides economic benefits while
contributing to environmental preservation in the IMT-GT
region [26].
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2.2.3. Random Forest (RF)

RF is a development of the Classification and Regression
Tree (CART) method that applies random feature
selection and bootstrap aggregating or bagging [27, 28].
The final class prediction in the RF algorithm uses the
prediction results of each tree combined or aggregated.
From the collection of predictions, the most votes are
selected in the class category, which often appears as a
prediction of the classification tree (majority voting). The
classification results are influenced by the adjustment of
model parameters commonly known as
hyperparameters. Different hyperparameter values
result in different model parameter values for a given
data set.

2.2.4. Principal Component Analysis

PCA is an analytical method that was first discovered in
1901 by Karl Pearson. PCA is used to simplify data by
transforming data into linear to produce a new
coordinate system with maximum variance [29]. PCAis an
analysis that aims to reduce the dimensions of data that
are multicollinear to data dimensions that are not
multicollinear without significantly reducing their
characteristics [30].

Multicollinearity is a situation with a strong correlation or
relationship between independent variables.
Multicollinearity can occur when the correlation
coefficient is close to one or greater than 0.75 [31]. The
correlation coefficient can be calculated using the
Pearson correlation formula, which is as shown in
Equation 1:

TlZ’]:l Z?:lXj Xl - 7=1Xj Z?=1 Xl

Txix, =
2
oS — (kY TR TR

M

Where n refers to the number of observations, X; and X,
are the j-th and the I-th variables, respectively, and k is
the total number of variables.

Several strategies can be applied to address
multicollinearity, including removing highly correlated
independentvariables, adding additional data to improve
variability and reduce correlation, transforming the
variables to alter their relationships, or applying PCA,
which converts the original correlated variables into a
new set of uncorrelated principal components [32]. This
process involves several key stages: preparing and
standardizing the data, computing the variance-
covariance  matrix, extracting eigenvalues and
eigenvectors, determining the proportion of variance
explained, and calculating principal component scores.

2.2.4.1. Data Preparation

There are two data preparation processes: data cleaning
and data standardization. Data cleaning eliminates
incomplete and accurate data to produce quality data
[33]. Data standardization is done to ensure that each
variable contributes equally to the analysis results [34].
Data standardization can be calculated using the Z-score
method, as shown in Equation 2:

Zyj =0 2

Where X;; refers to the original value of the i-th
observation for the j-th variable, y; is the mean of the f
th variable, and o; denotes the standard deviation
associated with that variable. This transformation allows
each variable to be centered around zero with a standard
deviation of one, facilitating comparison across variables
measured on different scales.

2.2.4.2. Variance-Covariance Matrix Calculation

Variance is calculated to assess the spread or dispersion
of data in a study, while the covariance matrix represents
the covariances between pairs of variables, with each cell
in the matrix containing a covariance value derived from
the sample data [35]. The variance is computed using the
Equation 3:

n

1
Var(x) = d? = EZ(Z” - uj)z 3)

i=1

This measures the average squared deviation of
standardized values from their mean. Meanwhile, the
covariance between two variables is calculated using
Equation 4:

1 n
Cov(x,y) = mZ(xij — i) ij — 1yj) €))
=

Where p, and u, refers to sample means of variables x
and y respectively and x; and y; /-th observation value of
x and y variables

2.2.4.3. Ejgenvalue and Ejgenvector Calculation

To identify the principal components, calculate the
eigenvalues (1) and eigenvectors (v) of the variance-
covariance matrix (R). The eigenvalues are determined by
solving the characteristic equation, as shown in Equation
5:

det (R- Al) =0 (5)

For each eigenvalue, the corresponding eigenvector
satisfies the Equation 6:
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Rv = v (6)
2.2.4.4. Proportion of Principal Components

The proportion of variance explained by each principal
component (PC) is calculated as shown in Equation 7:
Eigenvalue

PC(%) = ———— x 1009 7
(%) Total Variance % Q)

This value helps determine how much of the total dataset
variability is captured by each component.

2.2.4.5. Principal Component Scores

Once significant principal components are selected
(typically those with eigenvalues greater than one),
calculate the principal component scores for each
observation. This is done by projecting the standardized
data onto the eigenvectors, as shown in Equation 8:

A = vjZ (®)

Where vjis the transpose of the fth eigenvector of the
covariance matrix S, and Z is the vector of standardized
variables. This transformation is a key step in PCA, which
aims to reduce a dataset's dimensionality while retaining
most of the original variability.

2.2.4.6 Selecting the Number of Princijpal Components

The number of principal components (PC) can be
determined in three ways: principal components with
more than one eigenvalue, principal components with a
total variance value obtained of more than 80%, and the
number of major components by looking at the fracture
at the elbow of the scree plot [36]. However, some
experts recommend choosing principal components with
an eigenvalue greater than one. This is because the
explained diversity of the data will be reduced if the
eigenvalue is less than one.

3. Results and Discussion
3.1. Descriptive Statistics

Table 1 summarizes descriptive statistics of the variables
related to energy production and consumption in the
IMT-GT cooperation region, including the minimum
value, first quartile (Q1), median, mean value, third
quartile (Q3), and maximum value. These variables
include energy production, lignite coal production, crude
oil production, refined oil production, natural gas
production, electricity production, and energy
consumption. The descriptive analysis provides an
overview of the central tendency and dispersion of the
data, helping to identify patterns, outliers, and potential
data inconsistencies. For instance, variables with large
gaps between the minimum and maximum values may

indicate significant variability among countries or time
periods.

Table 1 shows that Energy Production has the highest
average of 150.4 and a wide range of values, from 27 to
470, indicating high variability. Similarly, Lignite Coal
Production has a minimum value of 0 and a maximum of
601, with an average of 89.88 but a median of only 18,
indicating a highly skewed distribution to the right. In
contrast, Crude Oil and Refined Oil Production shows a
more balanced distribution, indicated by relatively close
mean and median values and a narrow interquartile
range, signaling the stability of production in the
category.

Meanwhile, Natural Gas Production has a median (56)
slightly higher than the mean (48.74), indicating a mild
negative distribution trend. Electricity Production
displays a high average (124.43) with a wide range,
indicating large fluctuations in electricity production. On
the consumption side, Energy Consumption has a mean
of 110.8 and a median of 99.5, with a third quartile of
139.2, indicating that the energy consumption pattern is
also quite varied. In comparison, energy production is
generally higher than consumption, which may indicate
potential energy exports or inefficiencies in energy
distribution and utilization.

3.2. Multicollinearity Detection

Multicollinearity testing uses Pearson correlation, where
if the correlation value between independent variables is
more than 0.75, a multicollinearity problem in the data
can be assumed. The following is a correlation matrix or
covariance variance matrix shown in Figure 1.

The matrix shows a high correlation between the energy
production variable and lignite coal production, which is
0.92. So, it can be concluded that there is a
multicollinearity problem in this study data because the
Pearson correlation value between several independent
variables is more than 0.75. So, it is necessary to take
further action to overcome the multicollinearity problem
in this study data using PCA.

3.3 Principal Component Analysis (PCA)

Before conducting the PCA, all independent variables
were standardized to ensure comparability, as they were
originally measured on different scales. The standardized
variables are denoted as follows: Z1 represents Energy
Production, Z2 represents Lignite Coal Production, Z3
represents Crude QOil Production, Z4 represents Refined
Oil Production, Z5 represents Natural Gas Production,
and Z6 represents Electricity Production.
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Table 1. Descriptive statistics of energy-related variables in the IMT-GT region.

Variables Min Q1 Median Mean Q3 Max
Energy Production 27 64 88 150.4 228.2 470
Lignite Coal Production 0 2.75 18 89.88 56.5 601
Crude Oil Production 17.75 33 33.94 41.25 81
Refined Oil Production 10 24 42 37.54 49 65
Natural Gas Production 27 56 48.74 70 86
Electricity Production 23 73.25 118.5 124.43 170 309
Energy Consumption 21 69 99.5 110.8 139.2 241
g 2 3 3 B E
g F ¢ 5 & :
&) 2 @ b5 © 2
5 = E £ 2 g
v 5 Io] & z i
L L L B + 100
Energy Production- 1,00 0,92 0.71 0.58
Lignite Coal Production- 0.92 | 1.00 0.71 050
Crude Oil Production+ 0.55 1.00 0.73 o
0.00
Refined Oil Production - 1.00 0.56
Natural Gas Production- 0,71 0.73 1.00 L _050
Electricity Production- 0,5¢€ 0.71 0.56 1.00 (7
Figure 1. Correlation matrix of independent variables.
Table 2. Results of principal component analysis.
. Key Components
Variables PC1 PC2 PC3 PC4 PC5 PC6
Z1 0.5232 0.0636 0.1761 -0.3382 -0.1818 0.7374
Z2 0.4735 -0.1962 0.4016 -0.4249 -0.0638 -0.6256
Z3 0.2918 0.6511 -0.2915 -0.1645 0.6037 -0.1202
Z4 0.3026 -0.3337 -0.8435 -0.1208 -0.2466 -0.1007
Z5 0.4206 0.3994 0.0553 0.6471 -0.4637 -0.1636
Z6 0.3853 -0.5125 0.0902 0.4946 0.568 0.1162
Eigenvalue 3.3841 1.4619 0.7289 0.3679 0.0551 0.0021
Variance Proportion 0.5640 0.2436 0.1215 0.0613 0.0092 0.0004
Cumulative Proportion of Variance 0.5640 0.8077 0.9292 0.9905 0.9996 1

In this study, the Kaiser criterion, which considers
eigenvalues that are more than one, is used to determine
the number of main components. Based on Table 2, only
two principal components, PC1 and PC2, meet these
criteria. This shows that the first two principal
components are sufficient to represent most of the
information from the original data.

Table 2 shows two main components whose eigenvalue
is more than one; PC1 has an eigenvalue of 3.3841 with a
proportion of variance of 56.40%, while PC2 has an
eigenvalue of 1.4619 with a proportion of variance of
24.36%. The two main components have a cumulative

variance proportion of 80.77%; this means that PC1 and
PC2 can explain 80.77% of the data diversity of the six
independent variables. The equation obtained to
calculate the score of the selected main component are
shown in Equation 9 and Equation 10:

PC1 = 0.5232Z1 + 0.4735Z2 + 0.2918Z3

+ 0.3026Z4 + 0.4206Z5 (©)
+ 0.3853Z6

PC2 = 0.0636Z1 — 0.1962Z2 + 0.6511Z3
— 0.3337Z4 + 0.3994Z5 (10)

— 0.5125Z6

Page | 36



Infolitika Journal of Data Science, Vol. 3, No. 1, 2025

Random Forest

PCA-Random Forest

a2 @ Prediction W
=== 45-degree line ""
200 i
- .
175
‘8
3 150 e
2 -7
E s %
] e
¥ e
£ ~
* 100 .
R}
75 K
-
e
50 Kl
L
. .
25

Predicted value

200 1

-
&
=)

=
=]
=

@ Prediction
—== 45-degree line e

25 50 75 125 150 175 200 225

Actual Value

100 125

Actual Value

150 175 200 225

Figure 2. Comparison of actual vs. predicted values for RF and PCA-RF models.

Table 3. Comparison of RF and PCA-RF model evaluation.

Evaluation Metrics RF PCA-RF
MAE 5.811 4,169
MSE 86.091 22.909
RMSE 9.278 4,786
R? 0.976 0.993

3.4. Comparison of RF and PCA-RF Predictions

Table 3 presents the results of evaluating model
performance using several error metrics commonly used
in regression analysis: MAE, Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and coefficient of
determination (R2). These four metrics measure the error
rate and prediction accuracy of the two models being
compared: the RF model and the PCA-RF model.

Table 3 shows that the PCA-RF model has a lower MAE
value than the RF model, which is 4.169 compared to
5.811. The MSE value also decreases from 86.091 to
22.909, and the RMSE value drops from 9.278 to 4.786. A
high R? value indicates that the model has a high level of
accuracy. Table 3 shows that the PCA-RF model has a
higher R? value than the RF model, which is 0.993
compared to 0.976. This result shows that the PCA-RF
model has better prediction performance and is more
accurate than the RF model without the application of
PCA.

Figure 2 presents a visualization of the prediction results
against the actual values for the two models compared in
this study, namely RF and PCA-RF. Each graph shows the
scatter between the actual and predicted values
produced by the models, with a 45-degree line as a
reference to show perfect agreement between the two.
This visualization aims to provide further insight into the
predictive performance of the two models while
supporting the quantitative analysis described in Table 3.

Based on the scatterplot above, the RF model without
applying PCA has shown quite good performance.
However, after PCA is applied before the RF algorithm,
the feature dimensions are effectively reduced to
minimize the model complexity and potential
multicollinearity. As a result, the model becomes simpler
and more accurate than before. Visually, the prediction
points on the scatterplot after the application of PCA look
closer to the line, which indicates that the model
predictions are getting closer to the actual values. This
shows that applying PCA to the RF algorithm can improve
the model's ability to capture intrinsic patterns in the
data more efficiently and accurately.

4. Conclusions

Based on the results of the study, it can be concluded that
there is a multicollinearity problem in energy
consumption data in the IMT- GT cooperation area. To
overcome this problem, the PCA method is used, which
successfully reduces the data dimension into two main
components (PC1 and PC2), which are cumulatively able
to explain 80.77% of the data diversity. The model
evaluation results show that the application of PCA can
significantly improve the performance of the RF model.
This is shown by the decrease in prediction error values:
MAE from 5.811 to 4.169, MSE from 86.091 to 22.909, and
RMSE from 9.278 to 4.786. In addition, the coefficient of
determination (R?) increased from 0.976 to 0.993,
indicating that the model with PCA has a more accurate
prediction ability and can better explain the variability of
energy consumption data than the model without PCA.
Thus, the application of PCA in building an energy
consumption prediction model proved effective in
improving the accuracy and stability of the model.
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