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Abstract 
 
Aceh Province, located in the Sumatra megathrust zone of Indonesia, is one of the most 
seismically active regions in Southeast Asia. Understanding the spatial distribution of 
earthquake magnitudes is essential for disaster mitigation and risk management. This 
study compares two spatial interpolation methods Inverse Distance Weighted (IDW) and 
Kriging to determine the most accurate approach for mapping earthquake intensity in 
Aceh Province. A total of 2,255 earthquake events with magnitudes of 2.5 M and above, 
recorded between 1990 and 2024 by the United States Geological Survey (USGS), were 
analyzed. IDW was tested using five power parameters (p = 1–5), while Kriging applied 
three semivariogram models (spherical, exponential, and Gaussian). The interpolation 
accuracy was assessed through Root Mean Square Error (RMSE), Mean Square Error 
(MSE), and Mean Absolute Percentage Error (MAPE). Results indicated that Kriging with 
the exponential semivariogram achieved the highest accuracy, with RMSE = 0.0848, MSE 
= 0.0072, and MAPE = 1.14%, outperforming IDW (RMSE = 0.2288, MSE = 0.0523, MAPE = 
1.24%). The Kriging model effectively represented the gradual spatial decay of seismic 
energy, identifying Aceh Singkil and northern Simeulue as the most earthquake-prone 
zones, consistent with regional tectonic patterns. These findings confirm that 
incorporating spatial autocorrelation enhances interpolation accuracy and geophysical 
interpretation. The study establishes Kriging as a reliable tool for seismic hazard mapping 
and provides valuable insights for disaster preparedness, infrastructure planning, and 
future geostatistical applications in earthquake risk assessment. 
 

 

Copyright: © 2025 by the authors. This is an open-access article distributed under the 
terms of the Creative Commons Attribution-NonCommercial 4.0 International License. 
(https://creativecommons.org/licenses/by-nc/4.0/) 

1. Introduction 

Aceh Province, located at the northern tip of Sumatra, lies 
directly above the Sunda megathrust where the Indo-
Australian plate subducts beneath the Eurasian and 
Burma plates, making it one of the most seismically active 
regions on Earth [1]. The 26 December 2004 Sumatra–
Andaman megathrust earthquake (Mw 9.1–9.3) ruptured 
a very long segment of this plate boundary and generated 
the catastrophic Indian Ocean tsunami, causing more 
than 170,000 fatalities in Aceh alone and over 230,000 
deaths across 14 countries [2–4]. This disaster 

fundamentally changed local and national perspectives 
on seismic and tsunami risk, prompting substantial 
investments in early warning systems, reconstruction, 
and disaster preparedness. In such a tectonically 
complex setting with a history of megathrust 
earthquakes and evidence for multi-century recurrence 
of great events along the Aceh–Andaman segment, 
reliable spatial information on earthquake hazard is 
crucial for land use planning, infrastructure design, and 
disaster risk reduction [5]. 
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In recent decades, dense instrumental earthquake 
catalogues such as those curated by the U.S. Geological 
Survey (USGS) have become key resources for 
quantitative seismic hazard assessment, providing 
hypocenters and magnitudes over multi-decadal periods 
[6]. In Indonesia, several studies have used such data to 
construct local or regional hazard maps. For example, 
Mase et al. developed response-spectra-based seismic 
hazard maps for Bengkulu City, highlighting spatial 
variations in ground-motion levels that are relevant for 
building codes and engineering design [7]. More recently, 
robust Ordinary Kriging was applied to map the spatial 
distribution of earthquake magnitudes in Bengkulu 
Province, revealing clusters of higher-magnitude events 
and demonstrating the usefulness of geostatistical 
interpolation for identifying high-risk areas [8]. In Java, 
spatial analysis of earthquake intensity distribution has 
shown that geospatial techniques can enhance 
understanding of seismic patterns but also noted that 
comprehensive interpolation analyses remain relatively 
scarce in Indonesian earthquake research [9]. Beyond 
seismology, geostatistical methods such as Kriging have 
been used in Indonesia for environmental and ecological 
applications, including mangrove site-suitability 
mapping, underscoring their versatility for spatial 
decision support [10].  

Spatial interpolation plays a central role in these 
applications by transforming discrete earthquake 
observations into continuous surfaces representing 
intensity or magnitude fields. Among the many available 
interpolation techniques, Inverse Distance Weighting 
(IDW) and Kriging are two of the most widely used. IDW is 
a deterministic method that assigns weights to 
observations based solely on distance, with closer points 
exerting stronger influence on the estimate; its simplicity 
and ease of implementation have made it popular in 
operational mapping [11]. Kriging, in contrast, is a 
geostatistical estimator that combines distance with a 
model of spatial autocorrelation derived from the 
semivariogram, and it can provide both predictions and 
associated uncertainty [12–14]. Comparative studies in 
various domains ranging from structural lineament 
extraction from digital elevation models [15], soil organic 
carbon stock estimation [16], to climate variable 
interpolation across complex terrain [17], generally 
report that Kriging yields lower prediction errors than 
IDW when the underlying process exhibits moderate to 
strong spatial dependence. However, results are context-
dependent: performance differences can be small in 
some settings, and the extent to which these findings 
transfer to highly clustered, fault-controlled seismicity is 
not always clear. 

Despite the growth of geostatistical applications in 
Indonesian geoscience, there remains a specific gap 
concerning the performance of IDW versus Kriging for 
earthquake magnitude mapping in Aceh. Existing 
Indonesian studies on seismic hazard either focus on 
different regions (e.g., Bengkulu, Java) [7], or adopt a 
single interpolation family often Kriging without 
systematically benchmarking it against IDW using a long-
term earthquake catalogue [8]. Moreover, most 
comparative studies between IDW and Kriging have been 
conducted for environmental variables rather than 
seismic data [18]. The spatial distribution of earthquake 
magnitudes in Aceh is strongly influenced by megathrust 
segments, the Great Sumatran Fault, and offshore fault 
systems, leading to anisotropic patterns and potential 
non-stationarity in the mean field. These characteristics 
raise methodological questions about which 
interpolation strategy provides the most reliable 
representation of historical seismicity, and how model 
choice might affect the delineation of zones deemed 
“high risk” by planners and emergency managers. 
Misclassification of such zones could have tangible 
consequences for settlement expansion, infrastructure 
placement, and prioritization of mitigation investments. 

Accordingly, the primary research problem addressed in 
this study is to identify which of two widely used 
interpolation methods (IDW and Kriging) provides the 
most accurate and geophysically meaningful 
representation of the spatial distribution of earthquake 
magnitudes in Aceh based on a multi-decadal catalogue 
from 1990 to 2024. This problem is not merely technical: 
if an interpolation method systematically underestimates 
magnitudes in certain areas, those locations may be 
undervalued in risk assessments, potentially leading to 
under-designed critical infrastructure or insufficient 
preparedness measures; conversely, overestimation may 
divert limited resources away from truly vulnerable 
communities. The question of “which method is more 
accurate” therefore translates directly into how 
confidently stakeholders can use interpolated magnitude 
maps to support disaster-risk-reduction decisions in 
Aceh’s high-consequence environment. 

To address this problem, the present study pursues three 
specific objectives. First, it characterizes the spatial 
distribution of historical earthquake magnitudes (M ≥ 2.5) 
in Aceh Province using a 34-year catalogue obtained from 
the USGS Earthquake Hazards Program, thereby 
providing a long-term view of seismicity patterns in the 
region [6]. Second, it implements IDW with a range of 
power parameters and Universal Kriging with several 
candidate semivariogram models to account for potential 
non-stationarity in the mean magnitude field, calibrating 
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each method using a leave-one-out cross-validation 
framework and standard error statistics. Third, it 
compares the predictive performance and resulting 
spatial patterns of IDW and Kriging, interpreting the 
differences considering Aceh’s tectonic structure and 
discussing their practical implications for disaster risk 
reduction and spatial planning. In line with prior evidence 
that earthquake magnitudes and intensities often exhibit 
spatial autocorrelation along plate boundaries and fault 
systems, the working hypothesis is that Universal Kriging 
with an appropriately fitted semivariogram will 
outperform IDW, yielding lower cross-validated errors 
and more geologically coherent magnitude fields. IDW 
and Kriging are chosen as the focus of this study because 
they constitute transparent, widely adopted baselines in 
hazard mapping; more complex interpolation and 
machine-learning approaches are left for future work 
once the behavior of these foundational methods is fully 
understood in the Aceh context. 

2. Materials and Methods 

2.1. Study Area and Data Source 

This study focuses on Aceh Province in the northern part 
of Sumatra, Indonesia, a region located along the Sunda 
megathrust and segmented strike-slip faults, which 
together generate frequent moderate to large 
earthquakes. The earthquake catalogue used in this 
analysis was obtained from the U.S. Geological Survey 
(USGS) Advanced National Seismic System (ANSS) 
Comprehensive Earthquake Catalog (ComCat) and 
Earthquake Hazards Program web service 
(https://earthquake.usgs.gov). The catalogue includes 
events with moment magnitude (Mw) ≥ 2.5 that occurred 
between 1 January 1990 and 31 December 2024 within a 
spatial window encompassing Aceh and its surrounding 
offshore areas (approximately 2–7° N and 94–99° E) [6].  

From the downloaded catalogue, we retained the origin 
time, epicentral coordinates (latitude, longitude), focal 
depth, and magnitude. Events flagged as quarry blasts or 
other non-tectonic sources were excluded using the 
catalog’s event type field. The remaining seismic events 
were then spatially filtered using the administrative 
boundary polygon of Aceh Province. Only events whose 
epicenters fell inside this polygon were used in the 
interpolation, ensuring that the resulting maps represent 
the seismicity within Aceh’s jurisdictional extent. 

2.2. Data Preprocessing 

All spatial operations were conducted in a geographic 
information system (GIS) environment. Earthquake 
epicenters were initially provided in geographic 
coordinates (latitude/longitude, WGS 84). For distance 

calculations and semivariogram analysis, coordinates 
were projected to an appropriate Universal Transverse 
Mercator (UTM) zone covering northern Sumatra to 
minimize distortions in distance and area; this projected 
coordinate system was used for all geostatistical 
computations, while final maps were visualized back in 
WGS 84. 

Basic quality control included checking for duplicated 
event IDs, missing magnitudes, and implausible 
coordinates; such records were removed. Descriptive 
statistics and boxplots of magnitude were used to 
identify statistical outliers. A small number of very high-
magnitude events (e.g., Mw ≥ 7.5), which appear as 
outliers relative to the bulk of the catalogue, correspond 
to physically meaningful megathrust earthquakes that 
are critical for seismic hazard. Consequently, these 
extreme events were retained rather than removed, 
following the recommendation that geostatistical 
analyses in hazard contexts should preserve the full 
range of observed values [19–21]. 

To evaluate potential non-stationarity in the mean 
magnitude field, we inspected scatterplots of magnitude 
versus latitude and longitude and fitted locally weighted 
regression (LOESS) smoothers. These exploratory plots 
indicated a systematic variation in mean magnitude along 
both the trench-perpendicular and trench-parallel 
directions, suggesting that the assumption of a constant 
mean required by Ordinary Kriging may be violated. This 
motivated the use of Universal Kriging with an explicit 
trend component [22, 23]. 

2.3. Spatial Interpolation Methods 

2.3.1. Inverse Distance Weighting (IDW) 

Inverse Distance Weighting (IDW) is a deterministic 
interpolation method that estimates the value of a 
variable at an unsampled location 𝑠0 as a weighted 
average of nearby observed values 𝑍(𝑠𝑖) [24]. The IDW 
estimator can be written as shown in Equation 1: 

𝑍̂(𝑠0) = ∑ 𝑤𝑖𝑍(𝑠𝑖)

𝑛

𝑖=1

, with 𝑤𝑖 =
𝑑(𝑠0, 𝑠𝑖)−𝑝

∑ 𝑑(𝑠0, 𝑠𝑗)−𝑝
𝑛

𝑗=1

, (1) 

where 𝑍̂(𝑠0)is the estimated earthquake magnitude at 
location 𝑠0, 𝑍(𝑠𝑖) is the observed magnitude at sample 
point 𝑠𝑖, 𝑑(𝑠0, 𝑠𝑖) is the Euclidean distance between 𝑠0 and 
𝑠𝑖 in the projected coordinate system, 𝑝is the power 
parameter controlling the rate at which influence decays 
with distance, and 𝑛is the number of neighboring points 
used for interpolation. 

In this study, we implemented IDW using a variable 
search radius that always included the nearest five 

https://earthquake.usgs.gov/
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observations. This choice reflects a compromise between 
capturing local detail and maintaining numerical stability: 
too few neighbors can create noisy “bull’s-eye” patterns 
around individual epicenters, whereas too many 
neighbors can oversmooth spatial variation that is 
important for hazard interpretation [24]. Limited 
sensitivity checks with larger neighborhoods (8–10 
points) produced qualitatively similar patterns and only 
marginal changes in error statistics; therefore, five 
neighbors were adopted as the standard setting. The 
power parameter 𝑝 was varied between 1 and 5 in integer 
increments, and the optimal value was selected based on 
cross-validation performance. 

2.3.2. Universal Kriging  

Kriging is a geostatistical interpolation technique that 
models spatial autocorrelation via the semivariogram 
and produces best linear unbiased predictions under 
specified assumptions [24]. Because exploratory analysis 
suggested a non-constant mean magnitude across Aceh, 
we employed Universal Kriging (UK), which allows the 
mean to vary deterministically as a function of spatial 
coordinates, rather than Ordinary Kriging, which 
assumes a constant mean over the domain. 

In Universal Kriging, the magnitude at location 𝑠 is 
decomposed as shown in Equation 2: 

𝑍(𝑠) = 𝑚(𝑠) + 𝜀(𝑠), (2) 

where 𝑚(𝑠)is a deterministic trend function and 𝜀(𝑠) is a 
zero-mean, second-order stationary random field. Here, 
𝑚(𝑠) was modeled as a first-order polynomial in 
projected coordinates as shown in Equation 3: 

𝑚(𝑠) = 𝛽0 + 𝛽1𝑥 + 𝛽2𝑦, (3) 

with 𝑥and 𝑦denoting easting and northing, respectively, 
and 𝛽𝑘regression coefficients estimated from the data. 
Residuals 𝜀̂(𝑠𝑖) = 𝑍(𝑠𝑖) − 𝑚̂(𝑠𝑖) were then used to 
compute an experimental semivariogram (Equation 4): 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝜀̂(𝑠𝑖) − 𝜀̂(𝑠𝑖 + ℎ)]2

𝑁(ℎ)

𝑖=1

, (4) 

where 𝛾(ℎ) is the semivariogram value at separation 
distance ℎ, 𝑁(ℎ) is the number of data pairs separated by 
distance ℎ, and 𝜀̂(𝑠𝑖) and 𝜀̂(𝑠𝑖 + ℎ) are residuals at 
locations separated by ℎ. 

Three standard semivariogram models spherical, 
exponential, and Gaussian were fitted to the 
experimental semivariogram by weighted least squares. 
These models are widely used in environmental and 
geoscientific applications and are recommended as 
flexible defaults when prior information about the 

correlation structure is limited [24]. Each model is 
characterized by a nugget, sill, and range parameter, 
which respectively represent microscale variability or 
measurement error, the total variance explained by 
spatial structure, and the distance beyond which values 
become effectively uncorrelated. 

The Universal Kriging predictor at an unsampled location 
𝑠0 can be expressed as shown in Equation 5: 

𝑍̂(𝑠0) = 𝑚̂(𝑠0) + ∑ 𝜆𝑖𝜀̂(𝑠𝑖)

𝑛

𝑖=1

, (5) 

where 𝑚̂(𝑠0) is the trend evaluated at 𝑠0, 𝜆𝑖 are Kriging 
weights obtained by solving the Kriging system defined 
by the fitted semivariogram model, and 𝑛 is the number 
of neighboring points used in the local neighborhood. To 
keep the neighborhood definition comparable with IDW, 
we again used the nearest five observations within a 
variable search radius for Kriging. 

Ordinary Kriging was initially tested as a candidate model. 
However, residual diagnostics revealed spatial patterns 
in the Ordinary Kriging residuals and a semivariogram 
shape consistent with an unmodeled large-scale trend, 
supporting the use of Universal Kriging in which the trend 
is explicitly modeled and only residual spatial correlation 
is handled by the semivariogram [25]. 

2.4. Implementation 

All data preprocessing and mapping were conducted 
using ArcGIS Pro and QGIS, while geostatistical 
computations (semivariogram estimation, model fitting, 
and Kriging) were performed in R with the “gstat” and “sp” 
packages. IDW interpolation used the standard 
implementation in the GIS software with the parameter 
settings described above. For Kriging, experimental 
semivariograms were computed using lag distances 
chosen to ensure a sufficient number of pairs per bin 
while covering approximately half of the maximum inter-
point distance, following common geostatistical practice 
[25]. Semivariogram models were then fitted and 
checked by visual comparison and by examining the fit to 
experimental points, as well as by cross-validation error 
statistics. 

2.5. Model Validation and Performance Metrics 

To evaluate and compare the predictive performance of 
IDW and Universal Kriging, we applied leave-one-out 
cross-validation (LOOCV), which is widely used in 
comparative studies of spatial interpolation methods 
[24]. For each event in turn, the observation at location 𝑠𝑖 
was temporarily removed from the dataset, the 
interpolation model was refitted using the remaining 𝑛 −

1 observations, and the value at 𝑠𝑖 was predicted. 
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Repeating this procedure for all 𝑛 events yielded a set of 
cross-validated predictions 𝑦̂𝑖 corresponding to observed 
magnitudes 𝑦𝑖. The same LOOCV framework and 
neighborhood settings were used for both IDW and 
Kriging to ensure a fair comparison. 

Predictive accuracy was quantified using several 
measures. The mean squared error (MSE) and root mean 
squared error (RMSE) are defined as shown in Equations 
6 and 7, respectively: 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

, (6) 

 
𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸, (7) 

where 𝑛 is the number of observations, 𝑦𝑖 is the observed 
magnitude at location 𝑖, and 𝑦̂𝑖 is the corresponding 
predicted magnitude. The mean error (ME) expressed as 
shown in Equation 8 was used as a measure of bias, with 
values close to zero indicating approximately unbiased 
predictions. 

𝑀𝐸 =
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

𝑛

𝑖=1

, (8) 

To express typical errors relative to the observed 
magnitude, we computed the mean absolute percentage 
error (MAPE), as shown in Equation 9: 

𝑀𝐴𝑃𝐸 =
100

𝑛
∑ ∣

𝑦𝑖 − 𝑦̂𝑖

𝑦𝑖
∣

𝑛

𝑖=1

, (9) 

These metrics are commonly recommended in reviews of 
spatial interpolation performance because they capture 
complementary aspects of model behavior, overall error 
magnitude, systematic bias, relative error, and 
association strength [26]. 

For the semivariogram model selection within Kriging, the 
exponential, spherical, and Gaussian models were each 
evaluated using LOOCV. The primary criterion for 
selecting the “best” semivariogram model was the lowest 
RMSE. When RMSE differences were negligible, 
preference was given to the m odel with smaller 
absolute bias (ME) and better visual agreement between 
the modeled and experimental semivariograms. The final 
comparison between IDW and Universal Kriging was 
based on their LOOCV RMSE, MAPE, and ME. 

3. Results and Discussion 

3.1. Descriptive Characteristics of the Earthquake 
Catalogue 

The 1990–2024 USGS catalogue for Aceh contains 2,255 
events with Mw ≥ 2.5 (Figure 1). Magnitudes range from 

2.5 to 9.1, with a mean of approximately 4.5, a median 
around 4.3, and an interquartile range dominated by 
moderate earthquakes (M 3.5–5.0). A small number of 
very large events (M ≥ 7.5), including the 2004 megathrust 
earthquake, appear as statistical outliers in the boxplot 
of magnitudes (Figure 2). These events, although 
extreme, are physically meaningful and crucial for 
seismic hazard, so they were retained in all subsequent 
analyses rather than being truncated or transformed 
away. 

Spatially, epicenters cluster along the offshore 
subduction interface west of Banda Aceh, around 
Simeulue and Aceh Singkil, and along segments of the 
Great Sumatran Fault that cut through the mainland. This 
pattern reveals clear anisotropy: seismicity is elongated 
parallel to major tectonic structures rather than being 
uniformly distributed across the province. These 
descriptive statistics are not only useful context but also 
directly inform the interpolation: the presence of 
clustered, fault-controlled seismicity with a long upper 
tail in magnitudes shapes both the semivariogram and 
the behavior of IDW and Kriging in subsequent steps. 

3.2. Semivariogram Analysis and Model Selection 

Exploratory semivariogram analysis of the Universal 
Kriging residuals indicates that earthquake magnitudes 
in Aceh exhibit clear spatial autocorrelation up to a finite 
range (Figure 3). The experimental semivariogram 
increases with separation distance h before approaching 
a sill, consistent with a stationary residual field after 
removal of the large-scale trend in magnitude. This 
pattern confirms that magnitudes at nearby locations 
tend to be more similar than those far apart, providing 
empirical justification for using Kriging rather than relying 
solely on distance-based weighting as in IDW  

Three standard semivariogram models spherical, 
exponential, and Gaussian were fitted to the 
experimental semivariogram. Parameter estimates 
(nugget, sill, range) are summarized in Table 1. All three 
models capture the general shape of the empirical 
semivariogram, but the exponential model yields slightly 
lower cross-validation errors and better visual agreement 
near the origin and around the practical range (Figure 3). 
The nugget term remains relatively small compared to 
the sill, suggesting that microscale variability and 
measurement error are present but do not dominate the 
total variance in magnitudes. The fitted range parameter 
indicates that spatial correlation extends over distances 
comparable to the spacing between major fault segments 
and offshore trench-parallel structures, echoing the 
underlying tectonics of the region. 
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Figure 1. Map of earthquake epicenter locations in Aceh 
Province. 

 

Figure 2. Boxplot of earthquake magnitudes showing outliers. 

Table 1. Fitted semivariogram model parameters. 

Model  Nugget Sill Range 
Spherical 0.157 0.216 0.574 
Exponential 0.157 0.216 0.574 
Gaussian 0.157 0.216 0.574 

3.3. Cross-validation Performance of IDW and Universal 
Kriging 

Model performance was evaluated using leave-one-out 
cross-validation (LOOCV) for all IDW power parameters (p 
= 1–5) and for Universal Kriging with the three 
semivariogram models. Summary statistics of prediction 
accuracy RMSE, MSE, and MAPE are reported in Table 2. 

For IDW, RMSE decreases modestly as the power 
parameter increases from p = 1 to p = 3, after which gains 
become negligible or even slightly reverse, consistent 
with the notion that excessively high powers 
overemphasize nearest neighbors and create noisy local 
surfaces. The best IDW configuration (here, p = 1) attains 

an RMSE of 0.2288 and a MAPE on the order of a few 
percent, with ME close to zero, indicating limited but non-
negligible errors. 

Universal Kriging with the exponential semivariogram 
outperforms all IDW settings, yielding a slightly lower 
RMSE (0. 0848), and marginally lower MAPE between 
observed and predicted magnitudes (Table 3). Although 
the numerical difference in RMSE between the best IDW 
and best Kriging models is modest, it is consistent and 
accompanied by reduced bias. Ordinary Kriging variants, 
by contrast, show slightly larger errors and stronger 
residual trends, supporting the choice of Universal 
Kriging in the presence of a non-constant mean 
magnitude field. 

From a practical standpoint, an RMSE difference of 
approximately 0.005 in Mw may appear small, but it can 
be meaningful near critical magnitude thresholds used in 
engineering and risk communication, for example, 
distinguishing between moderate (M 5–6), strong (M 6–7), 
and major (M ≥ 7) events. A systematic under- or 
overestimation of even a few tenths of a magnitude unit 
can shift locations across such thresholds, altering how 
they are prioritized in seismic risk reduction strategies. 

3.4. Spatial Patterns of Interpolated Magnitudes 

Figures 4 and 5 present the spatial interpolation results 
for Aceh Province. IDW maps for different power values 
(Figure 4) show qualitatively similar large-scale patterns: 
higher predicted magnitudes are concentrated offshore 
along the Sunda megathrust, particularly west of 
Simeulue and Aceh Singkil, while lower magnitudes 
dominate inland areas with fewer moderate-to-large 
earthquakes. The colors in Figure 4 represent predicted 
magnitudes (Mw) at unsampled locations, derived from 
the 1990–2024 catalogue; warmer tones indicate higher 
expected magnitudes and cooler tones lower 
magnitudes. 

As the power parameter p increases, the IDW surface 
becomes more locally influenced by nearest events. For 
p = 1, the surface is smooth and highlights broad 
gradients along the trench-parallel direction. For higher p 
(e.g., p = 4–5), the maps exhibit sharper local peaks 
around individual epicenters, producing “bull’s-eye” 
artifacts in data-sparse regions. While such features may 
visually emphasize recent large earthquakes, they can be 
misleading for hazard interpretation because they 
exaggerate the influence of isolated events without 
considering the broader spatial correlation structure. 

Universal Kriging with the exponential semivariogram 
yields a smoother yet geophysically coherent magnitude 
field (Figure 5). The map represents the expected  
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(a)                                                                                                (b) 

 
   (c) 

Figure 3. Experimental semivariogram and fitted models (a) spherical, (b) exponential and (c) Gaussian. 
 

Table 2. Cross-validation accuracy of IDW interpolation under 
different power parameters 

Power RMSE MSE MAPE 
1 0.2288 0.0523 1.24 
2 0.2362 0.0558 1.28 
3 0.2441 0.0596 1.32 
4 0.2511 0.0630 1.35 
5 0.2567 0.0659 1.38 

Table 3. Cross-validation accuracy of theoretical semivariogram 
models. 

Model  RMSE MSE MAPE 
Spherical 0.1232 0.0151 2.24 
Exponential 0.0848 0.0072 1.14 
Gaussian 0.1094 0.0119 2.46 

magnitude at each location given the historical catalogue 
and the estimated spatial autocorrelation not a 
deterministic forecast of specific future events. As in the 
IDW maps, higher expected magnitudes cluster along the 
offshore subduction interface and certain segments of 
the Great Sumatran Fault, aligning well with known 
tectonic structures. However, Kriging reduces the 
exaggerated local spikes produced by IDW and provides 
more gradual transitions between high- and low-
magnitude zones, reflecting the underlying 
semivariogram structure. 

The appearance of areas with predicted magnitudes ≥ 8 
in some offshore segments under Kriging does not imply 
precise forecasts of future earthquakes of that exact size. 
Rather, these values should be interpreted as reflecting 
locations where historical large events and their spatial 
correlation lead to a high expected magnitude under the 

model. In other words, the interpolated surfaces describe 
a smoothed representation of the spatial pattern of past 
events over 1990–2024; they cannot by themselves 
predict the timing or exact size of future earthquakes, 
which depend on complex tectonic and temporal 
processes beyond the scope of purely spatial 
interpolation. 

3.5. Outliers, Uncertainty, and Limitations 

The influence of very large earthquakes such as the 2004 
megathrust event is evident in both IDW and Kriging 
surfaces. Because these events were retained as outliers, 
they increase the local mean magnitude near their 
epicenters and contribute to elevated predicted 
magnitudes in surrounding offshore zones. In IDW, the 
impact of a single extreme event is largely controlled by 
the distance-based weighting and the choice of p, which 
can produce very high local peaks. In Kriging, the 
influence of such events is moderated by the 
semivariogram: while they still raise the local magnitude, 
the range and sill parameters limit how far their impact 
propagates and ensure that predictions remain 
consistent with the overall spatial correlation structure. 
This is one reason why Kriging yields smoother and 
arguably more realistic magnitude fields than IDW, 
particularly in data-sparse offshore regions. 

Nevertheless, the interpolated maps should be 
interpreted with caution. First, the analysis focuses on 
mean predictions and does not explicitly map prediction 
variance or confidence intervals, so spatial uncertainty is  
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Legend 

≤ 2.5      (Not felt)  

2.5-5.4  (Minor damage) 

5.5-6.0  (Slight damage) 

6.1-6.9  (Considerable damage) 

7.0-7.9  (Serious damage) 

≥ 8.0     (Total destruction) 

 

Figure 4. IDW interpolation maps at varying power parameters (1–5).

  

Figure 5. Spatial interpolation of earthquake intensity in Aceh Province using Kriging (Exponential Model).
 
not directly visualized. Predictions in areas with sparse 
data especially far offshore or in regions with few 
historical events are inherently less reliable than 
predictions in well-sampled zones. Kriging offers a formal 

way to quantify this via the Kriging variance, and future 
work should exploit this feature to produce 
accompanying uncertainty maps that identify where 
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additional monitoring or instrumentation would most 
improve hazard estimates. 

Second, the interpolation is purely spatial and aggregates 
events over a 34-year period. It therefore provides a long-
term view of where earthquakes have historically 
occurred, but it does not capture temporal clustering, 
changes in seismic regime, or evolving stress conditions. 
Changes in plate coupling, aftershock sequences, and 
slow-slip events can all modify future seismicity patterns 
relative to the historical record. Time-dependent seismic 
hazard models or point-process approaches would be 
required to address these aspects explicitly. 

Third, while Universal Kriging with the exponential 
semivariogram appears to perform best among the 
tested methods, it is still based on relatively simple 
assumptions: a linear spatial trend and an isotropic 
semivariogram. The observed elongation of seismicity 
along faults suggests that anisotropic or direction-
dependent variogram models could further improve 
realism. Likewise, more advanced approaches such as 
regression–Kriging with tectonic covariates, spatio-
temporal models, or machine-learning methods may 
capture additional structure beyond what classical 
Kriging and IDW can represent. These extensions, 
however, are beyond the scope of the present 
benchmark comparison. 

Despite these limitations, the results demonstrate that 
Kriging provides a modest but consistent improvement 
over IDW in representing the spatial pattern of historical 
earthquake magnitudes in Aceh, while also offering a 
framework to quantify uncertainty. For practice, the 
Kriging-based maps can serve as a long-term baseline for 
identifying zones where high-magnitude events have 
historically clustered and where attention to seismic 
design, retrofitting, and evacuation planning should be 
prioritized. Integrating these maps with exposure and 
vulnerability layers population, buildings, critical 
infrastructure would allow local authorities to convert the 
geostatistical outputs into actionable risk-reduction 
strategies. 

4. Conclusions 

This study set out to identify which of two widely used 
interpolation methods Inverse Distance Weighting (IDW) 
and Universal Kriging provides the most accurate and 
geophysically meaningful representation of the spatial 
distribution of earthquake magnitudes in Aceh Province, 
based on a 34-year USGS catalogue (1990–2024) of 
events with Mw ≥ 2.5. Using a consistent leave-one-out 
cross-validation framework and a common 
neighborhood definition, we found that Universal Kriging 
with an exponential semivariogram model systematically 

outperforms IDW across standard accuracy metrics. The 
best IDW configuration (p = 1) achieved an RMSE of 
0.2288, whereas Universal Kriging reduced the RMSE to 
0.0848 and yielded slightly lower MAPE, and smaller bias 
between observed and predicted magnitudes. Although 
the numerical differences are modest, they are 
consistent and indicate that explicitly modeling spatial 
autocorrelation provides measurable benefits over 
purely distance-based weighting. 

The interpolated magnitude fields reveal coherent spatial 
patterns that align with Aceh’s tectonic framework. Both 
IDW and Kriging highlight elevated expected magnitudes 
along the offshore Sunda megathrust and selected 
segments of the Great Sumatran Fault, with lower 
magnitudes dominating inland areas. However, IDW 
particularly at higher power parameters tends to produce 
“bull’s-eye” artifacts and exaggerated local peaks around 
individual large events, especially in data-sparse regions. 
In contrast, Universal Kriging generates smoother and 
more geologically plausible gradients, because the 
semivariogram constrains how far and how strongly 
individual earthquakes influence surrounding locations. 
The resulting maps should therefore be interpreted as 
smoothed representations of the long-term spatial 
pattern of historical magnitudes rather than as 
deterministic forecasts of specific future events. 

At the same time, several limitations and sources of 
uncertainty must be acknowledged. First, the analysis is 
purely spatial and aggregates events over a 34-year 
period; it does not capture temporal clustering, changes 
in seismic regime, or evolving stress conditions, so 
extrapolation to future seismicity requires caution. 
Second, only two interpolation families (IDW and 
Universal Kriging) were examined with relatively simple 
assumptions a linear spatial trend and an isotropic 
semivariogram despite clear evidence that seismicity is 
elongated along major faults. More complex methods, 
such as anisotropic variogram models, regression–
Kriging with tectonic covariates, or spatio-temporal point-
process models, may further improve realism but were 
beyond the scope of this benchmark comparison. Third, 
we focused on mean predictions and did not map the 
Kriging prediction variance, so users do not yet see where 
interpolated values are most uncertain; reliability is likely 
lower in offshore or inland regions with sparse historical 
data. 

Despite these constraints, the findings have concrete 
implications for practice. The Kriging-based maps provide 
a transparent, data-driven baseline for identifying zones 
where high-magnitude events have historically clustered 
and where seismic-resistant design, retrofitting, and 
evacuation planning should be prioritized. In particular, 
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areas with interpolated magnitudes in the upper bands 
(e.g., Mw ≥ 6.5–7.0) can be treated as priority zones for 
stricter building codes, targeted community 
preparedness, and protection of critical infrastructure, 
provided that they are interpreted in conjunction with 
official national hazard maps. For future work, we 
recommend: (i) regularly updating the interpolation as 
new earthquake data become available; (ii) extending the 
analysis to include Kriging variance and uncertainty 
mapping; (iii) exploring anisotropic and regression-based 
geostatistical models that incorporate distance to faults, 
bathymetry, and site conditions; and (iv) testing hybrid 
frameworks that integrate geostatistics with machine-
learning or physics-based seismic hazard models. 
Together, these steps would move from a static, spatially 
averaged picture of historical seismicity toward more 
comprehensive, probabilistic tools to support disaster 
risk reduction in Aceh. 
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