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Abstract

Aceh Province, located in the Sumatra megathrust zone of Indonesia, is one of the most
seismically active regions in Southeast Asia. Understanding the spatial distribution of
earthquake magnitudes is essential for disaster mitigation and risk management. This
study compares two spatial interpolation methods Inverse Distance Weighted (IDW) and
Kriging to determine the most accurate approach for mapping earthquake intensity in
Aceh Province. A total of 2,255 earthquake events with magnitudes of 2.5 M and above,
recorded between 1990 and 2024 by the United States Geological Survey (USGS), were
analyzed. IDW was tested using five power parameters (p = 1-5), while Kriging applied
three semivariogram models (spherical, exponential, and Gaussian). The interpolation
accuracy was assessed through Root Mean Square Error (RMSE), Mean Square Error
(MSE), and Mean Absolute Percentage Error (MAPE). Results indicated that Kriging with
the exponential semivariogram achieved the highest accuracy, with RMSE = 0.0848, MSE
=0.0072, and MAPE = 1.14%, outperforming IDW (RMSE = 0.2288, MSE = 0.0523, MAPE =
1.24%). The Kriging model effectively represented the gradual spatial decay of seismic
energy, identifying Aceh Singkil and northern Simeulue as the most earthquake-prone
zones, consistent with regional tectonic patterns. These findings confirm that
incorporating spatial autocorrelation enhances interpolation accuracy and geophysical
interpretation. The study establishes Kriging as a reliable tool for seismic hazard mapping
and provides valuable insights for disaster preparedness, infrastructure planning, and
future geostatistical applications in earthquake risk assessment.
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. Introduction

fundamentally changed local and national perspectives
on seismic and tsunami risk, prompting substantial

Aceh Province, located at the northern tip of Sumatra, lies
directly above the Sunda megathrust where the Indo-
Australian plate subducts beneath the Eurasian and
Burma plates, making it one of the most seismically active
regions on Earth [1]. The 26 December 2004 Sumatra-
Andaman megathrust earthquake (Mw 9.1-9.3) ruptured
avery long segment of this plate boundary and generated
the catastrophic Indian Ocean tsunami, causing more
than 170,000 fatalities in Aceh alone and over 230,000
deaths across 14 countries [2-4]. This disaster

DOI: 10.60084/ijds.v3i2.347

investments in early warning systems, reconstruction,
and disaster preparedness. In such a tectonically
complex setting with a history of megathrust
earthquakes and evidence for multi-century recurrence
of great events along the Aceh-Andaman segment,
reliable spatial information on earthquake hazard is
crucial for land use planning, infrastructure design, and
disaster risk reduction [5].
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In recent decades, dense instrumental earthquake
catalogues such as those curated by the U.S. Geological
Survey (USGS) have become key resources for
quantitative seismic hazard assessment, providing
hypocenters and magnitudes over multi-decadal periods
[6]. In Indonesia, several studies have used such data to
construct local or regional hazard maps. For example,
Mase et al. developed response-spectra-based seismic
hazard maps for Bengkulu City, highlighting spatial
variations in ground-motion levels that are relevant for
building codes and engineering design [7]. More recently,
robust Ordinary Kriging was applied to map the spatial
distribution of earthquake magnitudes in Bengkulu
Province, revealing clusters of higher-magnitude events
and demonstrating the usefulness of geostatistical
interpolation for identifying high-risk areas [8]. In Java,
spatial analysis of earthquake intensity distribution has
shown that geospatial techniques can enhance
understanding of seismic patterns but also noted that
comprehensive interpolation analyses remain relatively
scarce in Indonesian earthquake research [9]. Beyond
seismology, geostatistical methods such as Kriging have
been used in Indonesia for environmental and ecological
applications, including mangrove site-suitability
mapping, underscoring their versatility for spatial
decision support [10].

Spatial interpolation plays a central role in these
applications by transforming discrete earthquake
observations into continuous surfaces representing
intensity or magnitude fields. Among the many available
interpolation techniques, Inverse Distance Weighting
(IDW) and Kriging are two of the most widely used. IDW is
a deterministic method that assigns weights to
observations based solely on distance, with closer points
exerting stronger influence on the estimate; its simplicity
and ease of implementation have made it popular in
operational mapping [11]. Kriging, in contrast, is a
geostatistical estimator that combines distance with a
model of spatial autocorrelation derived from the
semivariogram, and it can provide both predictions and
associated uncertainty [12-14]. Comparative studies in
various domains ranging from structural lineament
extraction from digital elevation models [15], soil organic
carbon stock estimation [16], to climate variable
interpolation across complex terrain [17], generally
report that Kriging yields lower prediction errors than
IDW when the underlying process exhibits moderate to
strong spatial dependence. However, results are context-
dependent: performance differences can be small in
some settings, and the extent to which these findings
transfer to highly clustered, fault-controlled seismicity is
not always clear.

Despite the growth of geostatistical applications in
Indonesian geoscience, there remains a specific gap
concerning the performance of IDW versus Kriging for
earthquake magnitude mapping in Aceh. Existing
Indonesian studies on seismic hazard either focus on
different regions (e.g., Bengkulu, Java) [7], or adopt a
single interpolation family often Kriging without
systematically benchmarking it against IDW using a long-
term earthquake catalogue [8]. Moreover, most
comparative studies between IDW and Kriging have been
conducted for environmental variables rather than
seismic data [18]. The spatial distribution of earthquake
magnitudes in Aceh is strongly influenced by megathrust
segments, the Great Sumatran Fault, and offshore fault
systems, leading to anisotropic patterns and potential
non-stationarity in the mean field. These characteristics
raise  methodological questions about  which
interpolation strategy provides the most reliable
representation of historical seismicity, and how model
choice might affect the delineation of zones deemed
“high risk” by planners and emergency managers.
Misclassification of such zones could have tangible
consequences for settlement expansion, infrastructure
placement, and prioritization of mitigation investments.

Accordingly, the primary research problem addressed in
this study is to identify which of two widely used
interpolation methods (IDW and Kriging) provides the
most  accurate and  geophysically  meaningful
representation of the spatial distribution of earthquake
magnitudes in Aceh based on a multi-decadal catalogue
from 1990 to 2024. This problem is not merely technical:
if an interpolation method systematically underestimates
magnitudes in certain areas, those locations may be
undervalued in risk assessments, potentially leading to
under-designed critical infrastructure or insufficient
preparedness measures; conversely, overestimation may
divert limited resources away from truly vulnerable
communities. The question of “which method is more
accurate” therefore translates directly into how
confidently stakeholders can use interpolated magnitude
maps to support disaster-risk-reduction decisions in
Aceh'’s high-consequence environment.

To address this problem, the present study pursues three
specific objectives. First, it characterizes the spatial
distribution of historical earthquake magnitudes (M > 2.5)
in Aceh Province using a 34-year catalogue obtained from
the USGS Earthquake Hazards Program, thereby
providing a long-term view of seismicity patterns in the
region [6]. Second, it implements IDW with a range of
power parameters and Universal Kriging with several
candidate semivariogram models to account for potential
non-stationarity in the mean magnitude field, calibrating
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each method using a leave-one-out cross-validation
framework and standard error statistics. Third, it
compares the predictive performance and resulting
spatial patterns of IDW and Kriging, interpreting the
differences considering Aceh’s tectonic structure and
discussing their practical implications for disaster risk
reduction and spatial planning. In line with prior evidence
that earthquake magnitudes and intensities often exhibit
spatial autocorrelation along plate boundaries and fault
systems, the working hypothesis is that Universal Kriging
with an appropriately fitted semivariogram will
outperform IDW, yielding lower cross-validated errors
and more geologically coherent magnitude fields. IDW
and Kriging are chosen as the focus of this study because
they constitute transparent, widely adopted baselines in
hazard mapping; more complex interpolation and
machine-learning approaches are left for future work
once the behavior of these foundational methods is fully
understood in the Aceh context.

2. Materials and Methods
2.1. Study Area and Data Source

This study focuses on Aceh Province in the northern part
of Sumatra, Indonesia, a region located along the Sunda
megathrust and segmented strike-slip faults, which
together generate frequent moderate to large
earthquakes. The earthquake catalogue used in this
analysis was obtained from the U.S. Geological Survey
(USGS) Advanced National Seismic System (ANSS)
Comprehensive Earthquake Catalog (ComCat) and
Earthquake Hazards Program web service
(https://earthquake.usgs.gov). The catalogue includes
events with moment magnitude (Mw) > 2.5 that occurred
between 1 January 1990 and 31 December 2024 within a
spatial window encompassing Aceh and its surrounding
offshore areas (approximately 2-7° N and 94-99° E) [6].

From the downloaded catalogue, we retained the origin
time, epicentral coordinates (latitude, longitude), focal
depth, and magnitude. Events flagged as quarry blasts or
other non-tectonic sources were excluded using the
catalog's event type field. The remaining seismic events
were then spatially filtered using the administrative
boundary polygon of Aceh Province. Only events whose
epicenters fell inside this polygon were used in the
interpolation, ensuring that the resulting maps represent
the seismicity within Aceh'’s jurisdictional extent.

2.2. Data Preprocessing

All spatial operations were conducted in a geographic
information system (GIS) environment. Earthquake
epicenters were initially provided in geographic
coordinates (latitude/longitude, WGS 84). For distance

calculations and semivariogram analysis, coordinates
were projected to an appropriate Universal Transverse
Mercator (UTM) zone covering northern Sumatra to
minimize distortions in distance and area; this projected
coordinate system was used for all geostatistical
computations, while final maps were visualized back in
WGS 84.

Basic quality control included checking for duplicated
event IDs, missing magnitudes, and implausible
coordinates; such records were removed. Descriptive
statistics and boxplots of magnitude were used to
identify statistical outliers. A small number of very high-
magnitude events (e.g., Mw > 7.5), which appear as
outliers relative to the bulk of the catalogue, correspond
to physically meaningful megathrust earthquakes that
are critical for seismic hazard. Consequently, these
extreme events were retained rather than removed,
following the recommendation that geostatistical
analyses in hazard contexts should preserve the full
range of observed values [19-21].

To evaluate potential non-stationarity in the mean
magnitude field, we inspected scatterplots of magnitude
versus latitude and longitude and fitted locally weighted
regression (LOESS) smoothers. These exploratory plots
indicated a systematic variation in mean magnitude along
both the trench-perpendicular and trench-parallel
directions, suggesting that the assumption of a constant
mean required by Ordinary Kriging may be violated. This
motivated the use of Universal Kriging with an explicit
trend component [22, 23].

2.3. Spatial Interpolation Methods
2.3.1. Inverse Distance Weighting (IDW)

Inverse Distance Weighting (IDW) is a deterministic
interpolation method that estimates the value of a
variable at an unsampled location s, as a weighted
average of nearby observed values Z(s;) [24]. The IDW
estimator can be written as shown in Equation 1:

d(s0, 50"
S dssyr P
j=1

where Z(so)is the estimated earthquake magnitude at
location sq, Z(s;) is the observed magnitude at sample
point s;, d(so, s;) is the Euclidean distance between s, and
s; in the projected coordinate system, pis the power
parameter controlling the rate at which influence decays
with distance, and nis the number of neighboring points
used for interpolation.

n
2(s) = Z wiZ(s;), with w; =
i=1

In this study, we implemented IDW using a variable
search radius that always included the nearest five
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observations. This choice reflects a compromise between
capturing local detail and maintaining numerical stability:
too few neighbors can create noisy “bull's-eye” patterns
around individual epicenters, whereas too many
neighbors can oversmooth spatial variation that is
important for hazard interpretation [24]. Limited
sensitivity checks with larger neighborhoods (8-10
points) produced qualitatively similar patterns and only
marginal changes in error statistics; therefore, five
neighbors were adopted as the standard setting. The
power parameter p was varied between 1 and 5 in integer
increments, and the optimal value was selected based on
cross-validation performance.

2.3.2. Universal Kriging

Kriging is a geostatistical interpolation technique that
models spatial autocorrelation via the semivariogram
and produces best linear unbiased predictions under
specified assumptions [24]. Because exploratory analysis
suggested a non-constant mean magnitude across Aceh,
we employed Universal Kriging (UK), which allows the
mean to vary deterministically as a function of spatial
coordinates, rather than Ordinary Kriging, which
assumes a constant mean over the domain.

In Universal Kriging, the magnitude at location s is
decomposed as shown in Equation 2:

Z(s) = m(s) + £(s), (2)

where m(s)is a deterministic trend function and (s) is a
zero-mean, second-order stationary random field. Here,
m(s) was modeled as a first-order polynomial in
projected coordinates as shown in Equation 3:

m(s) = fo + Prx + B2y, 3)

with xand ydenoting easting and northing, respectively,
and By regression coefficients estimated from the data.
Residuals £(s;) = Z(s;) — i(s;) were then wused to
compute an experimental semivariogram (Equation 4):

N(h)

1
Y =550 Z [E(s) = &Gsi + DI, @

where y(h) is the semivariogram value at separation
distance h, N(h) is the number of data pairs separated by
distance h, and &(s;) and &(s; + h) are residuals at
locations separated by h.

Three standard semivariogram models spherical,
exponential, and Gaussian were fitted to the
experimental semivariogram by weighted least squares.
These models are widely used in environmental and
geoscientific applications and are recommended as
flexible defaults when prior information about the

correlation structure is limited [24]. Each model is
characterized by a nugget, sill, and range parameter,
which respectively represent microscale variability or
measurement error, the total variance explained by
spatial structure, and the distance beyond which values
become effectively uncorrelated.

The Universal Kriging predictor at an unsampled location
so can be expressed as shown in Equation 5:

2(s0) = MCso) + ) A5, ®)
i=1

where 7i(sy) is the trend evaluated at s,, 4; are Kriging
weights obtained by solving the Kriging system defined
by the fitted semivariogram model, and n is the number
of neighboring points used in the local neighborhood. To
keep the neighborhood definition comparable with IDW,
we again used the nearest five observations within a
variable search radius for Kriging.

Ordinary Kriging was initially tested as a candidate model.
However, residual diagnostics revealed spatial patterns
in the Ordinary Kriging residuals and a semivariogram
shape consistent with an unmodeled large-scale trend,
supporting the use of Universal Kriging in which the trend
is explicitly modeled and only residual spatial correlation
is handled by the semivariogram [25].

2.4. Implementation

All data preprocessing and mapping were conducted
using ArcGIS Pro and QGIS, while geostatistical
computations (semivariogram estimation, model fitting,
and Kriging) were performed in R with the “gstat” and “sp”
packages. IDW interpolation wused the standard
implementation in the GIS software with the parameter
settings described above. For Kriging, experimental
semivariograms were computed using lag distances
chosen to ensure a sufficient number of pairs per bin
while covering approximately half of the maximum inter-
point distance, following common geostatistical practice
[25]. Semivariogram models were then fitted and
checked by visual comparison and by examining the fit to
experimental points, as well as by cross-validation error
statistics.

2.5. Model Validation and Performance Metrics

To evaluate and compare the predictive performance of
IDW and Universal Kriging, we applied leave-one-out
cross-validation (LOOCV), which is widely used in
comparative studies of spatial interpolation methods
[24]. For each event in turn, the observation at location s;
was temporarily removed from the dataset, the
interpolation model was refitted using the remaining n —
1 observations, and the value at s; was predicted.
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Repeating this procedure for all n events yielded a set of
cross-validated predictions y; corresponding to observed
magnitudes y;. The same LOOCV framework and
neighborhood settings were used for both IDW and
Kriging to ensure a fair comparison.

Predictive accuracy was quantified using several
measures. The mean squared error (MSE) and root mean
squared error (RMSE) are defined as shown in Equations
6 and 7, respectively:

n
1 .
MSE == i - 9% ©
i=1
RMSE = VMSE, @)

where n is the number of observations, y; is the observed
magnitude at location i, and J; is the corresponding
predicted magnitude. The mean error (ME) expressed as
shown in Equation 8 was used as a measure of bias, with
values close to zero indicating approximately unbiased
predictions.

1 n
ME = ;;(Yi =) ®

To express typical errors relative to the observed
magnitude, we computed the mean absolute percentage
error (MAPE), as shown in Equation 9:

n
100 i — Vi
MAPE = — pamniy) €)
n Vi

i=1
These metrics are commonly recommended in reviews of
spatial interpolation performance because they capture
complementary aspects of model behavior, overall error
magnitude, systematic bias, relative error, and

association strength [26].

For the semivariogram model selection within Kriging, the
exponential, spherical, and Gaussian models were each
evaluated using LOOCV. The primary criterion for
selecting the “best” semivariogram model was the lowest
RMSE. When RMSE differences were negligible,
preference was given to the m odel with smaller
absolute bias (ME) and better visual agreement between
the modeled and experimental semivariograms. The final
comparison between IDW and Universal Kriging was
based on their LOOCV RMSE, MAPE, and ME.

3. Results and Discussion

3.1. Descriptive Characteristics of the FEarthquake
Catalogue

The 1990-2024 USGS catalogue for Aceh contains 2,255
events with Mw > 2.5 (Figure 1). Magnitudes range from

2.5 to 9.1, with a mean of approximately 4.5, a median
around 4.3, and an interquartile range dominated by
moderate earthquakes (M 3.5-5.0). A small number of
very large events (M = 7.5), including the 2004 megathrust
earthquake, appear as statistical outliers in the boxplot
of magnitudes (Figure 2). These events, although
extreme, are physically meaningful and crucial for
seismic hazard, so they were retained in all subsequent
analyses rather than being truncated or transformed
away.

Spatially, epicenters cluster along the offshore
subduction interface west of Banda Aceh, around
Simeulue and Aceh Singkil, and along segments of the
Great Sumatran Fault that cut through the mainland. This
pattern reveals clear anisotropy: seismicity is elongated
parallel to major tectonic structures rather than being
uniformly distributed across the province. These
descriptive statistics are not only useful context but also
directly inform the interpolation: the presence of
clustered, fault-controlled seismicity with a long upper
tail in magnitudes shapes both the semivariogram and
the behavior of IDW and Kriging in subsequent steps.

3.2. Semivariogram Analysis and Model Selection

Exploratory semivariogram analysis of the Universal
Kriging residuals indicates that earthquake magnitudes
in Aceh exhibit clear spatial autocorrelation up to a finite
range (Figure 3). The experimental semivariogram
increases with separation distance /4 before approaching
a sill, consistent with a stationary residual field after
removal of the large-scale trend in magnitude. This
pattern confirms that magnitudes at nearby locations
tend to be more similar than those far apart, providing
empirical justification for using Kriging rather than relying
solely on distance-based weighting as in IDW

Three standard semivariogram models spherical,
exponential, and Gaussian were fitted to the
experimental semivariogram. Parameter estimates
(nugget, sill, range) are summarized in Table 1. All three
models capture the general shape of the empirical
semivariogram, but the exponential model yields slightly
lower cross-validation errors and better visual agreement
near the origin and around the practical range (Figure 3).
The nugget term remains relatively small compared to
the sill, suggesting that microscale variability and
measurement error are present but do not dominate the
total variance in magnitudes. The fitted range parameter
indicates that spatial correlation extends over distances
comparable to the spacing between major fault segments
and offshore trench-parallel structures, echoing the
underlying tectonics of the region.
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Figure 1. Map of earthquake epicenter locations in Aceh
Province.
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Figure 2. Boxplot of earthquake magnitudes showing outliers.

Table 1. Fitted semivariogram model parameters.

Model Nugget Sill Range
Spherical 0.157 0.216 0.574
Exponential 0.157 0.216 0.574
Gaussian 0.157 0.216 0.574

3.3. Cross-validation Performance of IDW and Universal
Kriging

Model performance was evaluated using leave-one-out
cross-validation (LOOCV) for all IDW power parameters (p
= 1-5) and for Universal Kriging with the three
semivariogram models. Summary statistics of prediction
accuracy RMSE, MSE, and MAPE are reported in Table 2.

For IDW, RMSE decreases modestly as the power
parameter increases from p = 1 to p = 3, after which gains
become negligible or even slightly reverse, consistent
with the notion that excessively high powers
overemphasize nearest neighbors and create noisy local
surfaces. The best IDW configuration (here, p = 1) attains

an RMSE of 0.2288 and a MAPE on the order of a few
percent, with ME close to zero, indicating limited but non-
negligible errors.

Universal Kriging with the exponential semivariogram
outperforms all IDW settings, yielding a slightly lower
RMSE (0. 0848), and marginally lower MAPE between
observed and predicted magnitudes (Table 3). Although
the numerical difference in RMSE between the best IDW
and best Kriging models is modest, it is consistent and
accompanied by reduced bias. Ordinary Kriging variants,
by contrast, show slightly larger errors and stronger
residual trends, supporting the choice of Universal
Kriging in the presence of a non-constant mean
magnitude field.

From a practical standpoint, an RMSE difference of
approximately 0.005 in Mw may appear small, but it can
be meaningful near critical magnitude thresholds used in
engineering and risk communication, for example,
distinguishing between moderate (M 5-6), strong (M 6-7),
and major (M = 7) events. A systematic under- or
overestimation of even a few tenths of a magnitude unit
can shift locations across such thresholds, altering how
they are prioritized in seismic risk reduction strategies.

3.4. Spatial Patterns of Interpolated Magnitudes

Figures 4 and 5 present the spatial interpolation results
for Aceh Province. IDW maps for different power values
(Figure 4) show qualitatively similar large-scale patterns:
higher predicted magnitudes are concentrated offshore
along the Sunda megathrust, particularly west of
Simeulue and Aceh Singkil, while lower magnitudes
dominate inland areas with fewer moderate-to-large
earthquakes. The colors in Figure 4 represent predicted
magnitudes (Mw) at unsampled locations, derived from
the 1990-2024 catalogue; warmer tones indicate higher
expected magnitudes and cooler tones lower
magnitudes.

As the power parameter p increases, the IDW surface
becomes more locally influenced by nearest events. For
p = 1, the surface is smooth and highlights broad
gradients along the trench-parallel direction. For higher p
(e.g., p = 4-5), the maps exhibit sharper local peaks
around individual epicenters, producing “bull's-eye”
artifacts in data-sparse regions. While such features may
visually emphasize recent large earthquakes, they can be
misleading for hazard interpretation because they
exaggerate the influence of isolated events without
considering the broader spatial correlation structure.

Universal Kriging with the exponential semivariogram
yields a smoother yet geophysically coherent magnitude
field (Figure 5). The map represents the expected
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Figure 3. Experimental semivariogram and fitted models (a) spherical, (b) exponential and (c) Gaussian.

Table 2. Cross-validation accuracy of IDW interpolation under
different power parameters

Power RMSE MSE MAPE
1 0.2288 0.0523 1.24
2 0.2362 0.0558 1.28
3 0.2441 0.0596 1.32
4 0.2511 0.0630 1.35
5 0.2567 0.0659 1.38

Table 3. Cross-validation accuracy of theoretical semivariogram

models.
Model RMSE MSE MAPE
Spherical 0.1232 0.0151 2.24
Exponential 0.0848 0.0072 1.14
Gaussian 0.1094 0.0119 2.46

magnitude at each location given the historical catalogue
and the estimated spatial autocorrelation not a
deterministic forecast of specific future events. As in the
IDW maps, higher expected magnitudes cluster along the
offshore subduction interface and certain segments of
the Great Sumatran Fault, aligning well with known
tectonic structures. However, Kriging reduces the
exaggerated local spikes produced by IDW and provides
more gradual transitions between high- and low-
magnitude  zones, reflecting the  underlying
semivariogram structure.

The appearance of areas with predicted magnitudes > 8
in some offshore segments under Kriging does not imply
precise forecasts of future earthquakes of that exact size.
Rather, these values should be interpreted as reflecting
locations where historical large events and their spatial
correlation lead to a high expected magnitude under the

model. In other words, the interpolated surfaces describe
a smoothed representation of the spatial pattern of past
events over 1990-2024; they cannot by themselves
predict the timing or exact size of future earthquakes,
which depend on complex tectonic and temporal
processes beyond the scope of purely spatial
interpolation.

3.5. Outliers, Uncertainty, and Limitations

The influence of very large earthquakes such as the 2004
megathrust event is evident in both IDW and Kriging
surfaces. Because these events were retained as outliers,
they increase the local mean magnitude near their
epicenters and contribute to elevated predicted
magnitudes in surrounding offshore zones. In IDW, the
impact of a single extreme event is largely controlled by
the distance-based weighting and the choice of p, which
can produce very high local peaks. In Kriging, the
influence of such events is moderated by the
semivariogram: while they still raise the local magnitude,
the range and sill parameters limit how far their impact
propagates and ensure that predictions remain
consistent with the overall spatial correlation structure.
This is one reason why Kriging yields smoother and
arguably more realistic magnitude fields than IDW,
particularly in data-sparse offshore regions.

Nevertheless, the interpolated maps should be
interpreted with caution. First, the analysis focuses on
mean predictions and does not explicitly map prediction
variance or confidence intervals, so spatial uncertainty is
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Figure 4. IDW interpolation maps at varying power parameters (1-5).
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Figure 5. Spatial interpolation of earthquake intensity in Aceh Province using Kriging (Exponential Model).

not directly visualized. Predictions in areas with sparse way to quantify this via the Kriging variance, and future
data especially far offshore or in regions with few work should exploit this feature to produce
historical events are inherently less reliable than accompanying uncertainty maps that identify where

predictions in well-sampled zones. Kriging offers a formal
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additional monitoring or instrumentation would most
improve hazard estimates.

Second, the interpolation is purely spatial and aggregates
events over a 34-year period. It therefore provides a long-
term view of where earthquakes have historically
occurred, but it does not capture temporal clustering,
changes in seismic regime, or evolving stress conditions.
Changes in plate coupling, aftershock sequences, and
slow-slip events can all modify future seismicity patterns
relative to the historical record. Time-dependent seismic
hazard models or point-process approaches would be
required to address these aspects explicitly.

Third, while Universal Kriging with the exponential
semivariogram appears to perform best among the
tested methods, it is still based on relatively simple
assumptions: a linear spatial trend and an isotropic
semivariogram. The observed elongation of seismicity
along faults suggests that anisotropic or direction-
dependent variogram models could further improve
realism. Likewise, more advanced approaches such as
regression-Kriging with tectonic covariates, spatio-
temporal models, or machine-learning methods may
capture additional structure beyond what classical
Kriging and IDW can represent. These extensions,
however, are beyond the scope of the present
benchmark comparison.

Despite these limitations, the results demonstrate that
Kriging provides a modest but consistent improvement
over IDW in representing the spatial pattern of historical
earthquake magnitudes in Aceh, while also offering a
framework to quantify uncertainty. For practice, the
Kriging-based maps can serve as a long-term baseline for
identifying zones where high-magnitude events have
historically clustered and where attention to seismic
design, retrofitting, and evacuation planning should be
prioritized. Integrating these maps with exposure and
vulnerability layers population, buildings, critical
infrastructure would allow local authorities to convert the
geostatistical outputs into actionable risk-reduction
strategies.

4. Conclusions

This study set out to identify which of two widely used
interpolation methods Inverse Distance Weighting (IDW)
and Universal Kriging provides the most accurate and
geophysically meaningful representation of the spatial
distribution of earthquake magnitudes in Aceh Province,
based on a 34-year USGS catalogue (1990-2024) of
events with Mw > 2.5. Using a consistent leave-one-out
cross-validation ~ framework and a  common
neighborhood definition, we found that Universal Kriging
with an exponential semivariogram model systematically

outperforms IDW across standard accuracy metrics. The
best IDW configuration (p = 1) achieved an RMSE of
0.2288, whereas Universal Kriging reduced the RMSE to
0.0848 and yielded slightly lower MAPE, and smaller bias
between observed and predicted magnitudes. Although
the numerical differences are modest, they are
consistent and indicate that explicitly modeling spatial
autocorrelation provides measurable benefits over
purely distance-based weighting.

The interpolated magnitude fields reveal coherent spatial
patterns that align with Aceh’s tectonic framework. Both
IDW and Kriging highlight elevated expected magnitudes
along the offshore Sunda megathrust and selected
segments of the Great Sumatran Fault, with lower
magnitudes dominating inland areas. However, IDW
particularly at higher power parameters tends to produce
“bull's-eye” artifacts and exaggerated local peaks around
individual large events, especially in data-sparse regions.
In contrast, Universal Kriging generates smoother and
more geologically plausible gradients, because the
semivariogram constrains how far and how strongly
individual earthquakes influence surrounding locations.
The resulting maps should therefore be interpreted as
smoothed representations of the long-term spatial
pattern of historical magnitudes rather than as
deterministic forecasts of specific future events.

At the same time, several limitations and sources of
uncertainty must be acknowledged. First, the analysis is
purely spatial and aggregates events over a 34-year
period; it does not capture temporal clustering, changes
in seismic regime, or evolving stress conditions, so
extrapolation to future seismicity requires caution.
Second, only two interpolation families (IDW and
Universal Kriging) were examined with relatively simple
assumptions a linear spatial trend and an isotropic
semivariogram despite clear evidence that seismicity is
elongated along major faults. More complex methods,
such as anisotropic variogram models, regression-
Kriging with tectonic covariates, or spatio-temporal point-
process models, may further improve realism but were
beyond the scope of this benchmark comparison. Third,
we focused on mean predictions and did not map the
Kriging prediction variance, so users do not yet see where
interpolated values are most uncertain; reliability is likely
lower in offshore or inland regions with sparse historical
data.

Despite these constraints, the findings have concrete
implications for practice. The Kriging-based maps provide
a transparent, data-driven baseline for identifying zones
where high-magnitude events have historically clustered
and where seismic-resistant design, retrofitting, and
evacuation planning should be prioritized. In particular,
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areas with interpolated magnitudes in the upper bands
(e.g., Mw > 6.5-7.0) can be treated as priority zones for
stricter  building  codes, targeted community
preparedness, and protection of critical infrastructure,
provided that they are interpreted in conjunction with
official national hazard maps. For future work, we
recommend: (i) regularly updating the interpolation as
new earthquake data become available; (ii) extending the
analysis to include Kriging variance and uncertainty
mapping; (iii) exploring anisotropic and regression-based
geostatistical models that incorporate distance to faults,
bathymetry, and site conditions; and (iv) testing hybrid
frameworks that integrate geostatistics with machine-
learning or physics-based seismic hazard models.
Together, these steps would move from a static, spatially
averaged picture of historical seismicity toward more
comprehensive, probabilistic tools to support disaster
risk reduction in Aceh.
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