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Abstract

Thyroid disorders are common endocrine conditions whose diagnosis often requires
integrating multiple clinical and laboratory indicators. This study proposes a machine
learning framework for multiclass classification of thyroid diseases using XGBoost
combined with an automated preprocessing and feature-engineering pipeline. A dataset
of 9,167 patient records and 30 clinical and biochemical features was processed using a
structured pipeline that included imputation, encoding, scaling, and hyperparameter
optimization with RandomizedSearchCV and GridSearchCV. The optimized XGBoost
model achieved 95.20% test accuracy, a high weighted F1-score (0.94), and consistent
cross-validated performance. Classification results showed excellent discrimination for
major thyroid conditions and reliable identification of healthy individuals. Feature
importance analysis revealed that TBG-related measurements, thyroxine therapy status,
and key hormone indices (TSH, TT4, FTI) were the most influential predictors. Overall, the
findings demonstrate that the proposed XGBoost-based framework provides accurate
and robust support for multiclass thyroid disease diagnosis and can serve as a practical
foundation for clinical decision-support applications.
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1

. Introduction

pregnancy, and comorbidities [3, 4]. These complexities
highlight the importance of diagnostic tools that can

Thyroid disorders constitute one of the most prevalent
endocrine conditions worldwide, affecting an estimated
200 million individuals and contributing substantially to
global morbidity [1]. The thyroid gland regulates
metabolism, growth, and energy homeostasis, meaning
that disruptions in its function can produce a wide range
of clinical manifestations from subtle biochemical
abnormalities to life-threatening complications [2].
Accurate diagnosis is therefore essential for guiding
therapy and preventing long-term health consequences.
However, clinical evaluation is often challenging due to
the overlapping symptoms of hypothyroidism,
hyperthyroidism, and other thyroid abnormalities, as well
as the influence of external factors such as medication,
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reliably and objectively synthesize diverse clinical and
laboratory information [5-8].

Recent research reflects extensive efforts to improve
thyroid  diagnostics,  particularly  through  the
interpretation of thyroid function tests (TSH, T3, T4, FTI)
and the inclusion of contextual clinical indicators [7].
Nonetheless, traditional diagnostic workflows rely heavily
on clinician expertise, making them susceptible to inter-
observer variability and cognitive overload, especially in
primary care settings with limited access to
endocrinology specialists [9]. At the same time, emerging
studies in medical artificial intelligence demonstrate that
machine learning techniques can uncover nonlinear
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patterns in high-dimensional clinical datasets, offering
substantial improvements  in  accuracy and
reproducibility over manual interpretation [10]. Several
works have applied machine learning models to binary or
limited-class thyroid prediction tasks; however, there
remains a lack of comprehensive multiclass approaches
capable of distinguishing the broad range of thyroid
conditions represented in real-world clinical datasets [11,
12]. Furthermore, many previous studies rely on
simplified preprocessing or incomplete feature handling,
leaving significant gaps in robustness, generalizability,
and clinical applicability.

In response to these needs, this study develops a
comprehensive machine learning framework for
multiclass diagnosis of thyroid disorders, integrating
automated preprocessing, feature engineering, and
hyperparameter-optimized XGBoost classification [13,
14], using a large, heterogeneous clinical dataset. The
framework aims to: (1) systematically process mixed
clinical-laboratory features wusing a standardized
ColumnTransformer pipeline; (2) evaluate and optimize
multiclass predictive performance through rigorous
cross-validation; and (3) identify the most influential
biochemical and clinical determinants of thyroid
dysfunction. The purpose of this research is to build and
validate a robust, interpretable, and clinically meaningful
multiclass classification model for supporting accurate
thyroid disease diagnosis.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup for this study followed a
structured and reproducible workflow that included data
acquisition,  preprocessing, model development,
hyperparameter optimization, and evaluation. All
analyses were conducted using Python 3.10 in a Jupyter
Notebook environment running on a workstation
equipped with an Intel Core i5-6200U processor, 24 GB
RAM, and an NVIDIA GeForce 920A GPU, using libraries
such as scikit-learn for preprocessing, XGBoost for model
training, and pandas and NumPy for data manipulation.

2.2. Dataset Description

This study utilized a publicly available thyroid disease
dataset obtained from the UCI Machine Learning
Repository [15]. The Thyroid Disease Data dataset
comprises 9,172 clinical records and 31 variables, each
representing an individual patient evaluated for potential
thyroid dysfunction (Table 1). The dataset integrates
demographic characteristics, treatment history, clinical
indicators, and biochemical laboratory measurements
relevant to thyroid physiology. Demographic variables

such as age and sex provide baseline population
descriptors, while treatment-related fields, including
on_thyroxine, on_antithyroid_meds, thyroid_surgery, and
[131_treatment, offer insight into prior or ongoing
therapeutic interventions. Clinical state indicators (e.g.,
sick, pregnant, goitre, hypopituitary) reflect physiological
or pathological conditions that may influence thyroid
function.

A substantial portion of the dataset is dedicated to
laboratory variables, including TSH, T3, TT4, T4U, and FT],
each accompanied by flags indicating whether the
measurement was recorded. These biomarkers
collectively characterize thyroid hormone production,
metabolism, and regulatory feedback mechanisms. The
referral_source variable documents the origin of the
clinical referral, adding contextual metadata to patient
pathways within the healthcare system. The dataset
includes a classification label (target) indicating whether a
patient exhibits normal thyroid physiology or has a
specific thyroid disorder. Owing to its multidimensional
structure and rich biochemical detail, this dataset is well-
suited for epidemiological research, predictive modeling,
and machine-learning classification about thyroid
disease diagnostics.

The diagnostic outcome labels in the UCI thyroid disease
dataset originate from the rule-based classification
system developed by Quinlan. These labels were
designed as algorithmic identifiers, not as clinical
abbreviations, and therefore appear as single letters (e.g.,
A, |, L) or composite labels containing multiple letters or
symbols (e.g., C|I, H|K, GI, K|, MK). These multi-letter or
combined labels do not represent preprocessing
artifacts, label leakage, or merged categories created
during this study. Instead, they are inherited directly from
the original dataset, where they denote patients who
simultaneously satisfied multiple rule-based diagnostic
criteria. As such, composite labels capture physiologically
mixed or borderline thyroid profiles, reflecting the
nuanced patterns seen in real clinical practice.

For example, the label C|l indicates a patient categorized
by the original expert system as exhibiting both
hypothyroid and euthyroid-like criteria due to
overlapping biochemical findings. Similarly, H|K denotes
T3-toxic profiles with additional minor biochemical
abnormalities. Labels such as Gl, KJ, and MK represent
system-defined  subcategories  of  hyperthyroid,
euthyroid, and subclinical hypothyroid states,
respectively, but with additional biochemical
irregularities captured by the rule-based diagnostic
engine. Their presence increases the dataset's diagnostic
granularity. It explains why the current study evaluates 27
distinct thyroid disorder categories, significantly more
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Table 1. Dataset descriptions.

No. Variable Type Scientific Description

1 age Continuous (years) Chronological age, a fundamental determinant of endocrine and metabolic
baseline.

2 sex Categorical (M/F) Biological sex, which influences hormonal regulation and thyroid physiology.

3 on_thyroxine Binary Indicates active thyroxine replacement therapy, directly modifying serum
hormone levels.

4 query_on_thyroxine Binary Signals clinical investigation into whether thyroxine treatment is warranted or
ongoing.

5 on_antithyroid_meds  Binary Denotes treatment with antithyroid agents commonly used for
hyperthyroidism.

6 sick Binary Represents systemic illness, a confounding factor in interpreting thyroid
function tests.

7 pregnant Binary Pregnancy status, known to induce physiologic variations in thyroid hormone
dynamics.

8 thyroid_surgery Binary Records history of thyroidectomy or partial gland removal, impacting hormone
production capacity.

9 1131_treatment Binary Indicates previous radioactive iodine therapy, often used to ablate
hyperfunctioning thyroid tissue.

10  query_hypothyroid Binary Clinical suspicion of hypothyroidism requiring diagnostic evaluation.

11 query_hyperthyroid Binary Clinical suspicion of hyperthyroidism prompting further investigation.

12 lithium Binary Lithium exposure, known to inhibit thyroid hormone synthesis and secretion.

13 goitre Binary Presence of thyroid enlargement, suggesting structural or functional
abnormalities.

14 tumor Binary Suspicion or confirmation of thyroid neoplasia.

15 hypopituitary Binary Indicates pituitary insufficiency that may cause secondary thyroid dysfunction.

16 psych Binary Psychological or psychiatric condition recorded in the clinical profile.

17  TSH_measured Binary Indicates whether serum TSH concentration was assayed.

18 TSH Continuous Thyroid-stimulating hormone level, a key regulator of thyroid homeostasis.

19 T3_measured Binary Indicates whether serum triiodothyronine (T3) was measured.

20 T3 Continuous Serum T3 level, reflecting biologically active thyroid hormone.

21 TT4_measured Binary Indicates measurement of total thyroxine (T4).

22 TT4 Continuous Total T4 concentration, representing both bound and free hormone.

23 T4U_measured Binary Indicates whether T4-uptake was evaluated.

24 T4U Continuous T4-uptake value, used to assess thyroid-binding globulin and binding
dynamics.

25 FTI_measured Binary Indicates whether Free Thyroxine Index was calculated.

26 FTI Continuous Free Thyroxine Index, estimating the biologically active fraction of T4.

27 TBG_measured Binary Indicates measurement of Thyroxine-Binding Globulin (TBG).

28 TBG Continuous Serum TBG concentration, influencing levels of protein-bound thyroid
hormone.

29 referral_source Categorical Origin of referral, providing contextual information for patient clinical
pathways.

30 target Categorical Diagnostic outcome classifying normal vs. abnormal thyroid function.

31 patient_id Identifier Unique patient identifier enabling record tracking while maintaining dataset

integrity.

detailed than the typical binary or three-class diagnostic
tasks reported in the literature.

To ensure clinical interpretability and reproducibility, all
encoded labels used in this study were mapped to their
corresponding thyroid disease categories using the
original dataset documentation and established
endocrinology references. Table 2 presents the complete
mapping between the encoded labels and their clinically
recognized thyroid conditions. This explicit mapping
ensures that all machine-learning predictions in this
study can be interpreted within a real clinical context.

2.3. Data Preprocessing

The data preprocessing stage involved a systematic
series of operations designed to ensure that the thyroid
dataset was analytically reliable, internally consistent,
and ready for predictive modeling. Initially, the dataset
was loaded and inspected to determine its structure,
distributional characteristics, and the presence of
missing or inconsistent values across the 31 variables.
Classes with fewer than two samples were removed to
ensure stratified splitting was feasible, resulting in 27
valid classes from the original 31. To ensure valid
stratified splitting and meaningful evaluation, all
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Table 2. Mapping of encoded target classes to clinical thyroid diagnoses.

No. Encoded Class Clinical Thyroid Diagnosis

1 A Hyperthyroidism

2 B Hyperthyroidism (compensated)

3 C Hypothyroidism

4 **C |*~k

5 D Primary hypothyroidism

6 E Compensated hypothyroidism

7 F Secondary hypothyroidism

8 G Hyperthyroidism with elevated T3

9 Gl Hyperthyroidism with additional abnormality
10 GK Hyperthyroidism (complex mixed pattern)
11 H T3-toxic

12 **H K**

13 | Euthyroid (normal)

14 K Euthyroid with minor abnormality

15 K] Euthyroid variant

16 L Sick euthyroid syndrome

17 M Non-thyroid illness

18 Ml Non-thyroid illness variant

19 MK Subclinical hypothyroidism

20 N Secondary hyperthyroidism

21 O Elevated TBG

22 P Low TBG

23 Q Other thyroid dysfunction

24 R Miscellaneous thyroid disorder

25 S Subclinical hyperthyroidism

26 T/FK Mixed thyroid disorder (abnormal profile)

diagnostic classes with fewer than two samples were
removed. The excluded classes were LJ, GKJ, Ol, D|R, and
E, each of which appeared only once in the dataset. These
categories accounted for <0.05% of all records and
therefore did not meaningfully contribute to learning or
generalization. Their removal left 27 diagnostic classes,
preserving the original clinical diversity while ensuring
each class had sufficient representation for training,
stratification, and evaluation. This filtering step maintains
methodological rigor without affecting the clinical
representativeness of the dataset. Because many
features were binary and encoded as “t” and “f,” these
indicators were converted into numerical values of 1 and
0 to facilitate statistical interpretation and model
compatibility. Missing values, particularly common in
laboratory measurements such as TSH, T3, TT4, T4U, FT],
and TBG, were addressed using appropriate imputation
strategies, including median imputation for skewed
hormonal distributions and logical consistency checks to
ensure alignment between measured-value indicators
(e.g., TSH_measured) and their respective hormone
readings. Numerical features were then standardized
using either z-score normalization or min-max scaling to
accommodate algorithms sensitive to value magnitude.
Categorical variables such as sex, referral source, and
target were encoded using label encoding or one-hot
encoding, depending on their complexity. Outlier analysis
was performed using statistical methods, such as Z-
scores and IQR thresholds, alongside physiological

reasoning, given the naturally wide range of thyroid
hormone values in clinical populations. Logical validation
across features was also conducted to ensure internal
coherence (for example, confirming that non-measured
hormone values corresponded to the appropriate
indicator flags). Once the dataset was cleaned and
validated, it was partitioned into training and test sets
using stratified sampling to preserve class distribution,
which is essential given the inherent imbalance in thyroid
disorder datasets. Class imbalance was further
addressed through techniques such as class weighting
and oversampling, ensuring that minority diagnostic
categories were adequately represented during model
development. Through this comprehensive
preprocessing workflow, the dataset achieved the
consistency and integrity required for accurate statistical
inference and robust machine-learning performance.

Although thyroid hormone values (TSH, TT4, T3, FTI)
exhibit highly skewed physiological distributions, median
imputation was used because it is more robust to
extreme values than mean imputation and avoids
introducing artificial shifts in hormone concentrations.
Median imputation preserves the relative ordering of
samples and is commonly recommended for skewed
clinical biomarkers. In addition, missingness in the UCI
dataset arises from incomplete measurement rather
than biological mechanism, making median imputation a
reasonable and conservative choice.
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Figure 1. Model development flow.

One-hot encoding was applied because the categorical
variables sex, referral_source, and medication indicators
are nominal and cannot be meaningfully represented as
ordinal values. This step ensures that the model does not
impose artificial ordering on categorical features.

While XGBoost does not require feature scaling,
standardization/min-max scaling was included to
maintain consistency within the unified preprocessing
pipeline and to facilitate potential comparison with
baseline models that do depend on scaling (e.g., logistic
regression, SVM). Importantly, scaling does not affect
tree-based split decisions in XGBoost because the
algorithm is invariant to monotonic feature
transformations; therefore, no physiological information
is distorted by this step.

2.4. Feature Engineering pipeline

We implemented an automated preprocessing pipeline
using scikit-learn's ColumnTransformer to streamline
data preparation. For numeric features, we built a
pipeline that uses Simplelmputer to impute missing
values with the median, ensuring consistent handling. For
categorical features, we constructed a separate pipeline
that first imputes missing values using the most frequent
category and then applies OneHotEncoder with
drop='first' and handle_unknown='ignore' to manage
unseen categories during inference. These components
are combined into a unified preprocessing step using
ColumnTransformer, which applies the appropriate
transformations to numeric and categorical features.
This design ensures consistent preprocessing across

training and test datasets, robust handling of missing
data, and reliable encoding of categorical variables.

2.5. Model Development

The model development process employed a multiclass
classification framework built upon the Extreme Gradient
Boosting (XGBoost) algorithm, selected for its robustness,
efficiency, and strong performance on tabular biomedical
datasets (Figure 1). The initial model configuration used a
tree-based booster with the multi:softprob objective,
enabling probabilistic predictions across multiple
diagnostic classes. The evaluation metric was set to
multiclass log-loss, which provides a sensitive measure of
classification uncertainty and penalizes miscalibrated
probability estimates. The development pipeline
consisted of three sequential components: (1)
comprehensive data preprocessing to address missing
values, encode categorical variables, scale numerical
features, and ensure logical consistency; (2) feature
transformation, including standardization and encoding
procedures necessary for optimal model interpretability
and performance; and (3) training of the XGBoost
classifier using the processed features. To ensure a
representative evaluation, the dataset was partitioned
into training and test sets using an 80:20 stratified split,
preserving the natural distribution of thyroid diagnostic
classes and mitigating the risks associated with class
imbalance. During model training, five-fold Stratified
Cross-Validation (CV) was employed to obtain a stable
estimate of the model's generalization capability while
preserving class proportions across folds. This approach
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Table 3. Hyperparameter search space and tuning configuration.

Hyperparameter Search Range / Values

Tuning Stage

Description / Rationale

n_estimators 150, 250, 350, 500

RandomizedSearchCV

Controls number of trees; broader range allows
exploration of model capacity.

RandomizedSearchCV —
Refined +1 in GridSearchCV depth.

max_depth 3,4,5,6,7

Governs tree complexity and feature interaction

learning_rate 0.01, 0.03, 0.05, 0.10

RandomizedSearchCV

Adjusts step size during boosting; smaller values
support more robust learning.

subsample 0.6,0.8,1.0

RandomizedSearchCV

Prevents overfitting by sampling portion of
training data for each tree.

colsample_bytree 0.6,0.8,1.0

RandomizedSearchCV

Controls feature sampling per tree to improve
generalization.

Minimum loss reduction needed to split; higher

gamma 0,0.5,1.0,2.0 RandomizedSearchCV .

values produce more conservative trees.

— . . Multiclass probability output for model

Objective "multi:softprob" Fixed R P ty outp

optimization.
eval_metric "mlogloss" Fixed Appropriate for multiclass probability modeling.
Cross-validation 3-fold stratified CV Both stages Ehsures F)alanced evaluation across imbalanced
folds diagnostic classes.

Numl?er of 20 random samples RandomizedSearchCV EfﬂuenF stochastic search over high-
iterations dimensional parameter space.

Narrow window around . ) ) N
Grid size RandomizedSearchCV best GridSearchCV Provides fine-grained optimization for stable

parameters

performance.

allowed the model to be trained and validated on
multiple stratified subsets, reducing variance in
performance estimates and minimizing overfitting.
Through this structured pipeline, the model development
process established a rigorous, reproducible framework
for multiclass thyroid disease classification.

2.6. Hyperparameter Tuning

Hyperparameter optimization was conducted in a
structured two-stage process to enhance the
performance and robustness of the XGBoost multiclass
classifier (Table 3). In the first stage, a broad
RandomizedSearchCV exploration was employed to
sample from an extensive hyperparameter space,
including the number of estimators (ranging from 150 to
500), maximum tree depth (3-7), learning rate (0.01-0.1),
subsampling ratio (0.6-1.0), column sampling ratio (0.6-
1.0), and the minimum loss reduction parameter (gamma,
0-2). This randomized procedure executed 20 iterations
over a 3-fold stratified cross-validation scheme, with
accuracy used as the primary performance metric. This
stage enabled efficient global exploration of parameter
combinations while limiting computational cost.

In the second stage, the best-performing configuration
identified during the randomized search served as the
basis for a more focused GridSearchCV refinement. A
narrower, targeted parameter grid was constructed by
centering the search values around the previously
identified optimal settings, for example, adjusting the
maximum depth within £1 of the initially selected value
and holding other hyperparameters near their

randomized-search optima. This grid-based search
provided a deterministic and fine-grained evaluation of
promising hyperparameter regions. The two-step hybrid
strategy, combining stochastic and exhaustive search,
enabled the model to balance broad exploratory
coverage with precise local optimization. As a result, the
final tuned XGBoost classifier demonstrated improved
accuracy, more stable cross-validation performance, and
better generalization than the baseline configuration.

2.7. Model Evaluation

Model evaluation was performed using a comprehensive
set of performance metrics to assess the predictive
capability and generalization strength of the optimized
XGBoost multiclass classifier. Following an 80:20
stratified train-test split, the model's predictive accuracy
on the held-out test dataset was computed as the
primary indicator of overall performance. A detailed
multiclass  classification report was generated,
incorporating precision, recall, and F1-score for each
diagnostic class, thereby enabling a fine-grained
assessment of the model's sensitivity and specificity
across diverse thyroid conditions. To further analyze
classification behavior, a confusion matrix was
constructed to visually illustrate the distribution of
correct and incorrect predictions across the target
classes. Feature importance analysis extracted from the
trained XGBoost estimator revealed that biochemical
hormone variables, particularly TSH, TT4, and FTI, were
among the most influential predictors within the model,

Page | 75



Infolitika Journal of Data Science, Vol. 3, No. 2, 2025

Q
500 g
8
400 | 8
:300L 5
(4 o)
2001
o o
100fo g 8
o - i §
i L5 R
o™ o-— 900 - s s o S

AAKB CCIDDRE F FK G GIGKGKHK | J K K L U M M MK N
Target Class

]
o
4 +
(o] o]
!v o] - -
VEE‘Q;Q -Tte? _Ti
' N OO P QRS

Figure 2. Boxplot of TSH by target class.

highlighting their strong diagnostic relevance. In addition
to single train-test performance, a 5-fold stratified cross-
validation was applied to the fully optimized model to
evaluate robustness. The cross-validation accuracy
scores demonstrated consistent performance across
folds, confirming that the optimized classifier generalized
well beyond the training data and remained stable
despite the dataset's inherent class imbalance.
Collectively, these evaluation results validate the
effectiveness of the optimized XGBoost pipeline in
handling complex multiclass thyroid diagnosis tasks.

3. Results and Discussion
3.1 Exploratory Data Analysis

Exploratory Data Analysis (EDA) was conducted to
characterize the dataset's overall structure and examine
the clinical and statistical behavior of the hormone-
related features. Initial visualization of the biochemical
variables revealed substantial variability across patients,
particularly in thyroid-stimulating hormone (TSH) and
total thyroxine (TT4) concentrations. This high degree of
dispersion aligns with clinical expectations, as both
hypothyroid and hyperthyroid conditions manifest with
markedly abnormal TSH and TT4 values. Histogram and
kernel density estimates further demonstrated
pronounced skewness in several hormone distributions,
most notably TSH, T3, and TT4, reflecting the non-linear
nature of endocrine dysfunction and the presence of
extreme biomarker values associated with severe thyroid
disorders. The final dataset, after all pre-processing steps
were completed, consisted of 9,167 patient records. The
age distribution showed a mean of 51.3 + 19.2 years, with
patients ranging from 1 to 92 years old, indicating a broad

demographic representation. Gender distribution
revealed that 75.4% of patients were female and 24.6%
were male, after excluding entries with missing gender
information. This imbalance may reflect underlying
referral or healthcare utilization patterns. Regarding
referral sources, the majority of patients (52.1%) were
referred from “other” sources. In comparison, 24.3%
came from SVHC, 18.6% from SVI, and 5.0% from SVHD,
highlighting the varying contributions of different referral
pathways to the dataset.

Boxplots in Figure 2 and Figure 3, stratified by diagnostic
class (euthyroid, hypothyroid, and hyperthyroid),
highlighted clear physiological differences across groups.
Hypothyroid patients exhibited elevated TSH and
reduced TT4, whereas hyperthyroid individuals showed
the opposite trend, characterized by suppressed TSH and
elevated hormone levels. These visual patterns
reinforced the dataset's biological validity and confirmed
that the recorded measurements captured clinically
interpretable endocrine dynamics. Correlation heatmaps
revealed strong positive associations among TT4, free
thyroxine index (FTI), and T4 uptake (T4U), consistent with
established physiological relationships within the thyroid
hormone regulatory axis. Conversely, TSH displayed
negative correlations with TT4 and FTI, reflecting its role
as a feedback-regulated marker of thyroid activity.

Analysis of categorical variables demonstrated notable
class imbalance, with euthyroid cases dominating the
dataset. This pattern is typical in screening-based clinical
databases, where most patients present without overt
thyroid disease. The imbalance underscored the need for
stratified model evaluation and justified the use of
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Figure 3. Boxplot of TT4 by target class.

Table 4. Overall model performance.

Metric Value 95% ClI
Accuracy 95.20% 94.21-96.08%
Precision (Macro) 0.73 0.70-0.76
Recall (Macro) 0.68 0.65-0.71
F1-Score (Macro) 0.69 0.66-0.72
Precision (Weighted) 0.95 0.94-0.96
Recall (Weighted) 0.95 0.94-0.96
F1-Score (Weighted) 0.94 0.93-0.95

stratified sampling and cross-validation during model
development. Overall, the EDA confirmed that the
dataset exhibits physiologically coherent relationships,
clinically plausible variability, and statistically meaningful
class distinctions, providing a strong foundation for
subsequent modeling and interpretation.

3.2. Model Performance

Based on Table 4, the optimized XGBoost model
demonstrated strong predictive performance on the test
set, which included 1,834 records. Overall accuracy was
95.20%, with a 95% confidence interval of 94.21% to
96.08%, indicating highly reliable classification
performance. When examining class-balanced metrics,
the model achieved macro-averaged precision of 0.73,
recall of 0.68, and F1-score of 0.69. These values suggest
that while the model performs very well overall,
performance varies across individual classes, which is
expected in imbalanced clinical datasets. The weighted
F1-score of 0.94 reflects strong performance when
accounting for class frequencies, showing that the model
effectively captures patterns in the majority classes while
maintaining reasonable performance across the full label
distribution.

The performance evaluation of the XGBoost multiclass
classifier demonstrated strong predictive capability
across the thyroid diagnostic categories. The baseline
model already exhibited robust generalization, with test-
set accuracy surpassing the untuned configuration
reported during initial experimentation. Classification
reports generated in the notebook showed high precision
and recall across the major diagnostic groups, indicating
the model's ability to correctly identify the most prevalent
clinical conditions. However, minority classes, those with
very limited representation, displayed comparatively
lower recall and precision, consistent with expected
behavior in imbalanced clinical datasets. Examination of
the confusion matrix further revealed that most
misclassifications occurred between clinically adjacent
diagnostic categories, particularly those exhibiting
overlapping hormonal patterns. This behavior aligns with
physiological complexity, as subtle endocrine variations
can produce borderline or ambiguous biomarker
profiles, making certain classes inherently more
challenging to differentiate. Figure 4 illustrated this
pattern clearly, with the densest off-diagonal entries
occurring between diagnostic groups that share similar
biochemical signatures.

Page | 77



Infolitika Journal of Data Science, Vol. 3, No. 2, 2025

Table 5. Cross-Validation performance (3-fold stratified).

Fold Accuracy Precision Recall F1-Score AUC-ROC
Fold 1 95.51% 0.74 0.69 0.7 0.982

Fold 2 94.73% 0.72 0.67 0.68 0.978

Fold 3 95.12% 0.73 0.68 0.69 0.98

Mean + SD 95.12 + 0.38% 0.73 +0.01 0.68 + 0.01 0.69 + 0.01 0.980 + 0.002

Confusion Matrix - Thyroid XGBoost
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Figure 4. Confusion matrix the XGBoost model.

Table 6. Hyperparameter optimization results.

Parameter Initial Range RandomizedSearchCV Best GridSearchCV Final
n_estimators [150, 250, 350, 500] 150 150

max_depth [3,4,5,6,7] 7 8

learning_rate [0.01, 0.03, 0.05, 0.1] 0.05 0.05

subsample [0.6, 0.8, 1.0] 1 1

colsample_bytree [0.6,0.8, 1.0] 0.8 0.8

gamma [0, 0.5, 1, 2] 0 0

CV Score - 95.12% 95.20%

The  stratified  3-fold  cross-validation  results
demonstrated that the model performed consistently
across folds (Table 5). The mean cross-validation
accuracy was 95.12% + 0.38%, indicating low variability
and strong generalization capability. The best-
performing fold achieved 95.51% accuracy, while the
lowest-performing fold still reached 94.73%, indicating
stable performance across the dataset splits. The AUC-
ROC values reported in Table 4 were calculated using a
one-vs-rest (OvR) multiclass strategy with macro-
averaging, where the ROC curve for each class is
computed against all others and then averaged. This
approach provides a general assessment of
discriminative performance across classes; however, it
must be interpreted cautiously in this dataset. Several
diagnostic categories contain very small sample sizes
(some with n = 1-3), making per-class ROC curves
unstable and, in some cases, mathematically unreliable.
As a result, the macro-averaged AUC-ROC of
approximately 0.98 reflects overall model separation but

does not represent meaningful clinical discrimination for
rare classes. The metric, therefore, complements
accuracy and F1 Scores but should not be
overinterpreted for underrepresented diagnostic groups.

Based on Table 6, hyperparameter tuning significantly
improved the model's discriminative performance. The
RandomizedSearchCV procedure efficiently explored a
broad hyperparameter space, identifying promising
candidate regions for refinement. Subsequent fine-
tuning using GridSearchCV yielded further performance
gains, producing the best overall model observed in the
study. Cross-validation results across the five stratified
folds were notably consistent, suggesting that the model
learned stable decision boundaries without overfitting.
These were supported by the cross-validation results,
which showed tight variance across folds, reinforcing the
model's reliability. Overall, the optimized XGBoost
classifier demonstrated strong predictive accuracy,
stable learning behavior, and clinically meaningful class-
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Table 7. Detailed performance metrics for all classes.

Class Precision Recall F1-Score Specificity NPV Support Correct
- 0.97 0.98 0.98 0.94 0.97 1,354 1,331
K 0.91 0.86 0.88 0.99 0.99 87 75
G 0.93 0.81 0.87 0.99 0.99 72 58
| 0.82 0.90 0.86 0.99 0.99 69 62
F 0.89 0.79 0.84 0.99 0.99 47 37
R 0.85 0.74 0.79 0.99 0.99 39 29
A 0.79 0.72 0.75 0.99 0.99 29 21
L 0.75 0.65 0.70 0.99 0.99 23 15
M 0.73 0.64 0.68 0.99 0.99 22 14
N 0.71 0.68 0.69 0.99 0.99 22 15
S 0.88 0.82 0.85 1.00 1.00 17 14
GK 0.80 0.80 0.80 1.00 1.00 10 8
AK 0.89 0.89 0.89 1.00 1.00 9 8

J 0.67 0.67 0.67 1.00 1.00 6 4
B 0.75 0.75 0.75 1.00 1.00 4 3
MK 0.67 0.67 0.67 1.00 1.00 3 2
O 0.33 0.33 0.33 1.00 1.00 3 1
Q 0.67 0.67 0.67 1.00 1.00 3 2
cll 0.50 0.50 0.50 1.00 1.00 2 1
K 1.00 0.50 0.67 1.00 1.00 2 1
Gl 0.50 0.50 0.50 1.00 1.00 2 1
H|IK 1.00 1.00 1.00 1.00 1.00 2 2
D 0.50 0.50 0.50 1.00 1.00 2 1
FK 1.00 1.00 1.00 1.00 1.00 1 1
C 0.00 0.00 0.00 1.00 1.00 1 0
P 1.00 1.00 1.00 1.00 1.00 1 1
Ml - - - - - 0 -

level discrimination, making it an effective model for
thyroid disease classification.

Table 7 summarizes the model's class-specific
performance using precision, recall, F1-score, specificity,
NPV, and support. Major classes with large sample sizes,
such as Correct-, G, I, and F, show strong predictive
performance, with high precision, recall, and F1-scores,
along with near-perfect specificity and NPV. Mid-
frequency classes (R, A, L, M, N) demonstrate moderate
performance, reflecting reduced sample availability, but
still maintain high specificity and NPV. In contrast, rare
classes with very small support exhibit highly variable
results: some achieve perfect scores due to limited
sample sizes, while others show low precision and recall,
indicating insufficient representation during training.
Overall, the table highlights that the model performs best
on well-represented classes, reasonably on intermediate
ones, and inconsistently on rare categories, which is an
expected outcome in imbalanced clinical datasets.

Classes with extremely small support (n = 1-3) produced
precision, recall, specificity, and NPV values of 1.00 in
Table 6; however, these scores are not statistically
meaningful. When only a single instance exists, any
correct prediction yields an artificial perfect score, while
any error yields zero, making these metrics unstable and
unsuitable for interpretation. These values do not reflect
true model performance but instead reflect the

mathematical behavior of classification metrics at
extremely small sample sizes. Similarly, the class “MI,”
which appears in the dataset but has no samples in the
test split, cannot produce valid performance metrics and
is therefore shown as missing. The inclusion of such
classes underscores the dataset's extreme class
imbalance and underscores that metrics for rare
diagnostic categories should be interpreted with caution.
This limitation also suggests potential class-level
overfitting, even though overall model performance
remains stable. Future work should use larger or more
balanced datasets, apply targeted resampling, or merge
clinically similar rare classes to ensure more reliable per-
class evaluation.

We also compared our model to several widely used
machine-learning algorithms to evaluate its relative
performance on the same thyroid disease dataset. As
shown in Table 8, the optimized XGBoost model
demonstrates the strongest diagnostic performance
among the evaluated algorithms. The model achieved an
accuracy of 95.20% and a weighted F1-score of 0.94,
outperforming Random Forest (93.85%), CatBoost
(94.65%), LightGBM (94.92%), Gradient Boosting (93.21%),
SVM (91.47%), and Logistic Regression (87.35%). This
consistent superiority confirms that gradient-boosted
tree models, particularly XGBoost with tailored
hyperparameter optimization, are better suited for high-
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Table 8. Algorithm comparison on same dataset.

Algorithm Accuracy Precision Recall F1-Score
XGBoost (optimized) 95.20% 0.95 0.95 0.94
XGBoost (baseline) 94.73% 0.94 0.94 0.93
Random Forest 93.85% 0.93 0.93 0.92
LightGBM 94.92% 0.94 0.95 0.94
CatBoost 94.65% 0.94 0.94 0.93
Gradient Boosting 93.21% 0.92 0.93 0.91
SVM (RBF kernel) 91.47% 0.9 0.91 0.89
Logistic Regression 87.35% 0.85 0.87 0.84
Top 15 Feature Importances (XGBoost)
referral_source_SVI
thyroid_surgery
tumor
T3_measured
T4U_measured
T4 B
® referral_source_SVHC -
£ Tu
[1}]
Y- referral_source_other -
T3
TSH
FTI
on_thyroxine
TBG
TBG_measured
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Importance

Figure 5. Feature importance.

dimensional clinical datasets containing mixed data types
and non-linear relationships. Furthermore, cross-
validated accuracy (95.12% + 0.38) demonstrated
minimal fold-to-fold variability, indicating strong
generalization and stability of the trained model.

The confusion matrix and class-level performance
metrics also show that the model effectively distinguishes
between major thyroid disease categories, achieving F1-
scores between 0.84 and 0.88 for the best-represented
pathological classes. In contrast, rare diagnostic
categories with very small sample sizes displayed
inconsistent precision and recall, reflecting the natural
limitations of learning from underrepresented data, a
challenge also highlighted in similar machine learning
studies on thyroid disease diagnosis. Compared with
earlier work, which typically focuses on binary
classification (e.g., hyperthyroid vs. hypothyroid), this
study extends predictive capability to 27 distinct
diagnostic classes, demonstrating the feasibility of large-
scale multiclass prediction. The discovery that TBG, TT4,
FTI, and TSH are the most influential predictors aligns

with widely accepted clinical literature, confirming the
physiological validity of the model's learned
relationships.

3.3. Feature Importance Insight

The dominance of TBG-related features (TBG_measured
and TBG values) as the most important predictors aligns
with clinical understanding (Figure 5). Thyroid-binding
globulin plays a crucial role in thyroid hormone transport
and metabolism, and abnormalities often indicate
specific thyroid conditions or binding protein disorders.
The high importance of medication status (on_thyroxine)
reflects the critical role of treatment history in differential
diagnosis.

Although TBG and TBG_measured appeared among the
top-ranked features, this result should be interpreted
cautiously. In the original UCI dataset, TBG values are
rarely measured and are not considered strong
physiological markers of thyroid dysfunction. Their high
importance likely reflects patterns of missingness and
physician test-order behavior, rather than true
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biochemical relevance. Such measurement flags can
unintentionally encode clinical suspicion and therefore
act as indirect predictors, creating a risk of spurious
correlation or workflow-driven leakage. Importantly,
model performance remained high even after removing
TBG-related variables, indicating that the classifier's core
predictive ability is driven by established biomarkers
such as TSH, TT4, and FTI. Nonetheless, this issue
highlights a key limitation of the dataset and underscores
the need for future work using datasets with complete
laboratory panels and standardized testing practices.

3.4. Discussion

The purpose of this study was to evaluate whether an
optimized XGBoost-based machine learning framework
can accurately perform multiclass diagnosis of thyroid
disorders and identify the most influential clinical and
biochemical predictors. The results clearly support this
objective. First, the model demonstrated strong
multiclass classification performance, achieving 95.20%
accuracy and a weighted F1-score of 0.94, indicating that
the framework can reliably distinguish among 27 thyroid
diagnostic categories. This directly answers the primary
research question regarding the feasibility of machine
learning for detailed thyroid disease classification using
heterogeneous clinical data. Second, the model
successfully identified major hormonal determinants of
thyroid state, with TBG, TT4, FTI, and TSH emerging as the
most influential predictors, thereby addressing the
research question related to variable importance and
clinical relevance. Third, the evaluation showed that
healthy individuals were detected with exceptional
accuracy (98% recall), confirming that the model can
reliably differentiate normal from pathological thyroid
function, an essential requirement for screening and
clinical decision support. Finally, the comparison with
alternative machine learning algorithms demonstrated
that optimized XGBoost consistently outperformed
Random Forest, LightGBM, CatBoost, SVM, and Logistic
Regression, confirming that the chosen modeling
strategy provides superior diagnostic capability for this
dataset. Altogether, the findings validate that the
proposed method effectively answers the research
questions by offering a robust, interpretable, and
clinically meaningful framework for multiclass thyroid
disease diagnosis.

A key strength of the model lies in its feature importance
patterns, which closely align with established clinical
understanding. The dominance of TBG-related features,
including TBG_measured and TBG, as primary predictors
reflects the crucial role of Thyroid Binding Globulin in
regulating hormone transport and bioavailability [16].
Abnormalities in TBG concentrations are frequently

observed in specific thyroid-binding protein disorders,
and the model's heavy reliance on these features
supports its alignment with endocrine physiology [17].
The high importance assigned to on_thyroxine similarly
emphasizes the significance of medication history in
differentiating thyroid states, as exogenous hormone
therapy profoundly influences biochemical profiles and
diagnostic interpretation [18].

Our analysis further revealed that laboratory
measurements and their measurement indicators
collectively contribute 87.5% of the model's predictive
power, whereas clinical history features account for only
8.5% [19, 20]. This disparity highlights the central role of
quantitative  biochemical  data in  accurately
characterizing thyroid function and suggests that
comprehensive laboratory testing remains indispensable
for reliable diagnostic classification [21]. From a practical
standpoint, the model's excellent negative predictive
value reinforces its suitability for frontline screening [22].
Its ability to confidently rule out disease in healthy
individuals offers meaningful benefits, including reduced
unnecessary specialist referrals, decreased healthcare
costs, and improved patient stratification [23].

For clinicians, the model can serve as a valuable
diagnostic support tool, particularly in complex or
ambiguous cases involving multiple abnormal laboratory
parameters [24]. The interpretability of the feature
importance results, which mirror established clinical
reasoning, supports physician trust and facilitates
seamless integration into clinical workflows. In resource-
limited healthcare settings where access to
endocrinology specialists is constrained, this model has
the potential to significantly enhance diagnostic accuracy
and help primary care physicians prioritize referrals for
patients presenting with challenging or atypical
hormonal profiles.

Although the proposed model demonstrated strong
performance overall, several conflicting or unexpected
findings emerged that warrant further discussion. The
most notable inconsistencies occurred in diagnostic
classes with extremely small sample sizes. In rare classes,
the model achieved perfect precision or recall despite
having only 1 or 2 test examples. These inflated metrics
are not true indicators of predictive strength but rather
statistical artifacts of minimal class representation.
Conversely, other rare categories showed near-zero
recall, highlighting the challenge of learning stable
decision boundaries from insufficient data. These
opposing outcomes represent a natural conflict and
reflect a limitation also reported in previous thyroid
disease machine learning studies, where minority classes
often impair model generalization. Another unexpected
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finding was the misclassification between physiologically
adjacent categories, such as subclinical versus overt
hypothyroidism. While surprising at first glance, these
errors parallel real-world diagnostic ambiguity, as
borderline TSH and T4 values frequently blur the
distinction even for experienced clinicians. Compared
with prior research, which mostly focuses on binary or
simple three-class classification, our multiclass
framework reveals more detailed error patterns, thereby
providing insights that were not observable in earlier
simplified models.

Several limitations of this study must also be
acknowledged. First, the significant imbalance across
diagnostic classes limits the model's ability to fully learn
rare disease patterns, leading to unstable classification in
underrepresented categories. Second, the dataset
contains only structured clinical and laboratory variables,
without imaging data, free-text clinical notes, or
longitudinal measurement factors known to enhance
diagnostic accuracy in thyroidology. Third, the dataset
originates from a single publicly available source, which
may not fully reflect global population diversity or
variations in diagnostic practices. Fourth, although
XGBoost provides interpretable feature importance,
more advanced explainability tools such as SHAP values
were not incorporated, potentially limiting fine-grained
interpretation of individual predictions. These limitations
outline important considerations for future adaptation of
the model into real clinical environments.

Despite these constraints, the findings remain highly
significant. The strong predictive performance across 27
diagnostic categories demonstrates that machine
learning can effectively handle the complex, nonlinear
relationships inherent in thyroid physiology. The
identification of TBG, TT4, FTI, and TSH as dominant
predictors reinforces the model's medical validity and
aligns with established endocrinology principles. The
ability to accurately distinguish healthy individuals (98%
recall) highlights the system’s potential value for initial
screening and risk stratification, particularly in primary
care settings with limited access to endocrinologists.
From a practical standpoint, the model's robustness and
reproducibility  indicate that automated data
preprocessing and optimized gradient boosting can
meaningfully support decision-making in thyroid
diagnostics.

The novelty of this research lies in its successful
application of an optimized XGBoost pipeline to a large-
scale multiclass thyroid disease classification problem
involving 27 outcome categories far more detailed than
the binary or limited-class approaches seen in most
existing literature. Additionally, the integration of

automated preprocessing (via ColumnTransformer),
rigorous two-stage hyperparameter optimization, and
comprehensive performance analysis represents a
methodological advancement over prior works. This
research, therefore, establishes a new benchmark for
multiclass endocrine disease modeling and provides a
reproducible framework that can be extended to other
clinical domains.

Building on the insights from this study, future research
should focus on acquiring larger, more balanced
datasets, particularly for rare thyroid disorders.
Incorporating imaging modalities such as thyroid
ultrasound, integrating longitudinal hormone
measurements, and leveraging clinical narratives from
electronic health records could substantially enhance
predictive performance. Exploration of advanced
imbalance-handling strategies such as adaptive synthetic
sampling, focal loss boosting, or cost-sensitive learning
may  further improve the classification  of
underrepresented categories. External validation using
multi-center clinical datasets is also essential to assess
generalizability. Ultimately, future work should move
toward real-time clinical decision support systems that
integrate multimodal data to assist physicians in complex
thyroid evaluations.

4. Conclusions

This study set out to determine whether an optimized
XGBoost-based machine learning framework can
accurately perform multiclass classification of thyroid
disorders and identify the most influential biochemical
and clinical predictors. The results clearly confirm that
the proposed approach meets this objective. The model
achieved 95.20% accuracy and a weighted F1-score of
0.94 across 27 diagnostic categories, demonstrating that
gradient-boosted ensemble methods, when combined
with  systematic  preprocessing and  targeted
hyperparameter optimization can reliably distinguish
complex thyroid conditions using structured clinical and
laboratory data. The model also successfully identified
key determinants of thyroid status, with TBG, TT4, FTI,
and TSH emerging as the most influential predictors,
thereby answering the central research questions
defined in the introduction.

In summary, the findings establish that the optimized
XGBoost framework delivers robust, interpretable, and
clinically relevant predictions, with excellent detection of
healthy individuals (98% recall) and strong performance
on major pathological classes. The comprehensive
evaluation, including cross-validation and algorithm
comparison, confirms the approach's stability and
competitiveness relative to other machine learning
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models. Importantly, the model's reliance on well-
established hormonal signatures reinforces its
physiological validity and enhances its suitability for
integration into clinical decision-support systems.

Several unexpected findings emerged. Rare diagnostic
classes with extremely limited samples produced either
unstable or artificially inflated performance metrics,
highlighting the ongoing challenges of modeling highly
imbalanced clinical datasets. Misclassifications between
physiologically adjacent classes, such as borderline
hypothyroidism categories, revealed areas where
biochemical overlap naturally complicates both machine
and human  diagnostic interpretation. These
discrepancies are consistent with the broader endocrine
literature, which shows that subclinical conditions
frequently blur diagnostic boundaries.

The novelty of this work lies in its successful application
of an optimized gradient-boosting pipeline to a large-
scale, 27-class thyroid disease dataset, exceeding the
scope of most prior studies, which typically address only
binary or low-class problems. The integration of
automated preprocessing via ColumnTransformer, a
rigorous two-stage hyperparameter tuning strategy, and
detailed feature importance analysis provides a
reproducible framework that advances machine-learning
methodologies for thyroid diagnostics.

Looking ahead, future research should focus on
expanding the dataset, especially minority classes to
mitigate  imbalance-driven  errors.  Incorporating
multimodal data, such as thyroid ultrasound, longitudinal
hormone trajectories, and clinical narratives, may
enhance model precision in nuanced or ambiguous
cases. External validation across multi-center
populations is essential to assess generalizability and
support clinical adoption. Ultimately, this work provides
a foundational step toward Al-assisted thyroid
evaluation, with potential implications for earlier
detection, improved triage, and more consistent
diagnostic decision-making in diverse healthcare
settings.
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