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Abstract 

 

Thyroid disorders are common endocrine conditions whose diagnosis often requires 

integrating multiple clinical and laboratory indicators. This study proposes a machine 

learning framework for multiclass classification of thyroid diseases using XGBoost 

combined with an automated preprocessing and feature-engineering pipeline. A dataset 

of 9,167 patient records and 30 clinical and biochemical features was processed using a 

structured pipeline that included imputation, encoding, scaling, and hyperparameter 

optimization with RandomizedSearchCV and GridSearchCV. The optimized XGBoost 

model achieved 95.20% test accuracy, a high weighted F1-score (0.94), and consistent 

cross-validated performance. Classification results showed excellent discrimination for 

major thyroid conditions and reliable identification of healthy individuals. Feature 

importance analysis revealed that TBG-related measurements, thyroxine therapy status, 

and key hormone indices (TSH, TT4, FTI) were the most influential predictors. Overall, the 

findings demonstrate that the proposed XGBoost-based framework provides accurate 

and robust support for multiclass thyroid disease diagnosis and can serve as a practical 

foundation for clinical decision-support applications. 
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1. Introduction 

Thyroid disorders constitute one of the most prevalent 

endocrine conditions worldwide, affecting an estimated 

200 million individuals and contributing substantially to 

global morbidity [1]. The thyroid gland regulates 

metabolism, growth, and energy homeostasis, meaning 

that disruptions in its function can produce a wide range 

of clinical manifestations from subtle biochemical 

abnormalities to life-threatening complications [2]. 

Accurate diagnosis is therefore essential for guiding 

therapy and preventing long-term health consequences. 

However, clinical evaluation is often challenging due to 

the overlapping symptoms of hypothyroidism, 

hyperthyroidism, and other thyroid abnormalities, as well 

as the influence of external factors such as medication, 

pregnancy, and comorbidities [3, 4]. These complexities 

highlight the importance of diagnostic tools that can 

reliably and objectively synthesize diverse clinical and 

laboratory information [5–8]. 

Recent research reflects extensive efforts to improve 

thyroid diagnostics, particularly through the 

interpretation of thyroid function tests (TSH, T3, T4, FTI) 

and the inclusion of contextual clinical indicators [7]. 

Nonetheless, traditional diagnostic workflows rely heavily 

on clinician expertise, making them susceptible to inter-

observer variability and cognitive overload, especially in 

primary care settings with limited access to 

endocrinology specialists [9]. At the same time, emerging 

studies in medical artificial intelligence demonstrate that 

machine learning techniques can uncover nonlinear 
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patterns in high-dimensional clinical datasets, offering 

substantial improvements in accuracy and 

reproducibility over manual interpretation [10]. Several 

works have applied machine learning models to binary or 

limited-class thyroid prediction tasks; however, there 

remains a lack of comprehensive multiclass approaches 

capable of distinguishing the broad range of thyroid 

conditions represented in real-world clinical datasets [11, 

12]. Furthermore, many previous studies rely on 

simplified preprocessing or incomplete feature handling, 

leaving significant gaps in robustness, generalizability, 

and clinical applicability. 

In response to these needs, this study develops a 

comprehensive machine learning framework for 

multiclass diagnosis of thyroid disorders, integrating 

automated preprocessing, feature engineering, and 

hyperparameter-optimized XGBoost classification [13, 

14], using a large, heterogeneous clinical dataset. The 

framework aims to: (1) systematically process mixed 

clinical–laboratory features using a standardized 

ColumnTransformer pipeline; (2) evaluate and optimize 

multiclass predictive performance through rigorous 

cross-validation; and (3) identify the most influential 

biochemical and clinical determinants of thyroid 

dysfunction. The purpose of this research is to build and 

validate a robust, interpretable, and clinically meaningful 

multiclass classification model for supporting accurate 

thyroid disease diagnosis. 

2. Materials and Methods 

2.1. Experimental Setup 

The experimental setup for this study followed a 

structured and reproducible workflow that included data 

acquisition, preprocessing, model development, 

hyperparameter optimization, and evaluation. All 

analyses were conducted using Python 3.10 in a Jupyter 

Notebook environment running on a workstation 

equipped with an Intel Core i5-6200U processor, 24 GB 

RAM, and an NVIDIA GeForce 920A GPU, using libraries 

such as scikit-learn for preprocessing, XGBoost for model 

training, and pandas and NumPy for data manipulation. 

2.2. Dataset Description 

This study utilized a publicly available thyroid disease 

dataset obtained from the UCI Machine Learning 

Repository [15]. The Thyroid Disease Data dataset 

comprises 9,172 clinical records and 31 variables, each 

representing an individual patient evaluated for potential 

thyroid dysfunction (Table 1). The dataset integrates 

demographic characteristics, treatment history, clinical 

indicators, and biochemical laboratory measurements 

relevant to thyroid physiology. Demographic variables 

such as age and sex provide baseline population 

descriptors, while treatment-related fields, including 

on_thyroxine, on_antithyroid_meds, thyroid_surgery, and 

I131_treatment, offer insight into prior or ongoing 

therapeutic interventions. Clinical state indicators (e.g., 

sick, pregnant, goitre, hypopituitary) reflect physiological 

or pathological conditions that may influence thyroid 

function. 

A substantial portion of the dataset is dedicated to 

laboratory variables, including TSH, T3, TT4, T4U, and FTI, 

each accompanied by flags indicating whether the 

measurement was recorded. These biomarkers 

collectively characterize thyroid hormone production, 

metabolism, and regulatory feedback mechanisms. The 

referral_source variable documents the origin of the 

clinical referral, adding contextual metadata to patient 

pathways within the healthcare system. The dataset 

includes a classification label (target) indicating whether a 

patient exhibits normal thyroid physiology or has a 

specific thyroid disorder. Owing to its multidimensional 

structure and rich biochemical detail, this dataset is well-

suited for epidemiological research, predictive modeling, 

and machine-learning classification about thyroid 

disease diagnostics. 

The diagnostic outcome labels in the UCI thyroid disease 

dataset originate from the rule-based classification 

system developed by Quinlan. These labels were 

designed as algorithmic identifiers, not as clinical 

abbreviations, and therefore appear as single letters (e.g., 

A, I, L) or composite labels containing multiple letters or 

symbols (e.g., C|I, H|K, GI, KJ, MK). These multi-letter or 

combined labels do not represent preprocessing 

artifacts, label leakage, or merged categories created 

during this study. Instead, they are inherited directly from 

the original dataset, where they denote patients who 

simultaneously satisfied multiple rule-based diagnostic 

criteria. As such, composite labels capture physiologically 

mixed or borderline thyroid profiles, reflecting the 

nuanced patterns seen in real clinical practice. 

For example, the label C|I indicates a patient categorized 

by the original expert system as exhibiting both 

hypothyroid and euthyroid-like criteria due to 

overlapping biochemical findings. Similarly, H|K denotes 

T3-toxic profiles with additional minor biochemical 

abnormalities. Labels such as GI, KJ, and MK represent 

system-defined subcategories of hyperthyroid, 

euthyroid, and subclinical hypothyroid states, 

respectively, but with additional biochemical 

irregularities captured by the rule-based diagnostic 

engine. Their presence increases the dataset's diagnostic 

granularity. It explains why the current study evaluates 27 

distinct thyroid disorder categories, significantly more  



Infolitika Journal of Data Science, Vol. 3, No. 2, 2025 

 Page | 72  
 

Table 1. Dataset descriptions. 

No. Variable Type Scientific Description 

1 age Continuous (years) Chronological age, a fundamental determinant of endocrine and metabolic 

baseline. 

2 sex Categorical (M/F) Biological sex, which influences hormonal regulation and thyroid physiology. 

3 on_thyroxine Binary Indicates active thyroxine replacement therapy, directly modifying serum 

hormone levels. 

4 query_on_thyroxine Binary Signals clinical investigation into whether thyroxine treatment is warranted or 

ongoing. 

5 on_antithyroid_meds Binary Denotes treatment with antithyroid agents commonly used for 

hyperthyroidism. 

6 sick Binary Represents systemic illness, a confounding factor in interpreting thyroid 

function tests. 

7 pregnant Binary Pregnancy status, known to induce physiologic variations in thyroid hormone 

dynamics. 

8 thyroid_surgery Binary Records history of thyroidectomy or partial gland removal, impacting hormone 

production capacity. 

9 I131_treatment Binary Indicates previous radioactive iodine therapy, often used to ablate 

hyperfunctioning thyroid tissue. 

10 query_hypothyroid Binary Clinical suspicion of hypothyroidism requiring diagnostic evaluation. 

11 query_hyperthyroid Binary Clinical suspicion of hyperthyroidism prompting further investigation. 

12 lithium Binary Lithium exposure, known to inhibit thyroid hormone synthesis and secretion. 

13 goitre Binary Presence of thyroid enlargement, suggesting structural or functional 

abnormalities. 

14 tumor Binary Suspicion or confirmation of thyroid neoplasia. 

15 hypopituitary Binary Indicates pituitary insufficiency that may cause secondary thyroid dysfunction. 

16 psych Binary Psychological or psychiatric condition recorded in the clinical profile. 

17 TSH_measured Binary Indicates whether serum TSH concentration was assayed. 

18 TSH Continuous Thyroid-stimulating hormone level, a key regulator of thyroid homeostasis. 

19 T3_measured Binary Indicates whether serum triiodothyronine (T3) was measured. 

20 T3 Continuous Serum T3 level, reflecting biologically active thyroid hormone. 

21 TT4_measured Binary Indicates measurement of total thyroxine (T4). 

22 TT4 Continuous Total T4 concentration, representing both bound and free hormone. 

23 T4U_measured Binary Indicates whether T4-uptake was evaluated. 

24 T4U Continuous T4-uptake value, used to assess thyroid-binding globulin and binding 

dynamics. 

25 FTI_measured Binary Indicates whether Free Thyroxine Index was calculated. 

26 FTI Continuous Free Thyroxine Index, estimating the biologically active fraction of T4. 

27 TBG_measured Binary Indicates measurement of Thyroxine-Binding Globulin (TBG). 

28 TBG Continuous Serum TBG concentration, influencing levels of protein-bound thyroid 

hormone. 

29 referral_source Categorical Origin of referral, providing contextual information for patient clinical 

pathways. 

30 target Categorical Diagnostic outcome classifying normal vs. abnormal thyroid function. 

31 patient_id Identifier Unique patient identifier enabling record tracking while maintaining dataset 

integrity. 

 

detailed than the typical binary or three-class diagnostic 

tasks reported in the literature. 

To ensure clinical interpretability and reproducibility, all 

encoded labels used in this study were mapped to their 

corresponding thyroid disease categories using the 

original dataset documentation and established 

endocrinology references. Table 2 presents the complete 

mapping between the encoded labels and their clinically 

recognized thyroid conditions. This explicit mapping 

ensures that all machine-learning predictions in this 

study can be interpreted within a real clinical context. 

 

2.3. Data Preprocessing 

The data preprocessing stage involved a systematic 

series of operations designed to ensure that the thyroid 

dataset was analytically reliable, internally consistent, 

and ready for predictive modeling. Initially, the dataset 

was loaded and inspected to determine its structure, 

distributional characteristics, and the presence of 

missing or inconsistent values across the 31 variables. 

Classes with fewer than two samples were removed to 

ensure stratified splitting was feasible, resulting in 27 

valid classes from the original 31. To ensure valid 

stratified splitting and meaningful evaluation, all  
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Table 2. Mapping of encoded target classes to clinical thyroid diagnoses. 

No. Encoded Class Clinical Thyroid Diagnosis 

1 A Hyperthyroidism 

2 B Hyperthyroidism (compensated) 

3 C Hypothyroidism 

4 **C I** 

5 D Primary hypothyroidism 

6 E Compensated hypothyroidism 

7 F Secondary hypothyroidism 

8 G Hyperthyroidism with elevated T3 

9 GI Hyperthyroidism with additional abnormality 

10 GK Hyperthyroidism (complex mixed pattern) 

11 H T3-toxic 

12 **H K** 

13 I Euthyroid (normal) 

14 K Euthyroid with minor abnormality 

15 KJ Euthyroid variant 

16 L Sick euthyroid syndrome 

17 M Non-thyroid illness 

18 MI Non-thyroid illness variant 

19 MK Subclinical hypothyroidism 

20 N Secondary hyperthyroidism 

21 O Elevated TBG 

22 P Low TBG 

23 Q Other thyroid dysfunction 

24 R Miscellaneous thyroid disorder 

25 S Subclinical hyperthyroidism 

26 T / FK Mixed thyroid disorder (abnormal profile) 

 

diagnostic classes with fewer than two samples were 

removed. The excluded classes were LJ, GKJ, OI, D|R, and 

E, each of which appeared only once in the dataset. These 

categories accounted for <0.05% of all records and 

therefore did not meaningfully contribute to learning or 

generalization. Their removal left 27 diagnostic classes, 

preserving the original clinical diversity while ensuring 

each class had sufficient representation for training, 

stratification, and evaluation. This filtering step maintains 

methodological rigor without affecting the clinical 

representativeness of the dataset. Because many 

features were binary and encoded as “t” and “f,” these 

indicators were converted into numerical values of 1 and 

0 to facilitate statistical interpretation and model 

compatibility. Missing values, particularly common in 

laboratory measurements such as TSH, T3, TT4, T4U, FTI, 

and TBG, were addressed using appropriate imputation 

strategies, including median imputation for skewed 

hormonal distributions and logical consistency checks to 

ensure alignment between measured-value indicators 

(e.g., TSH_measured) and their respective hormone 

readings. Numerical features were then standardized 

using either z-score normalization or min–max scaling to 

accommodate algorithms sensitive to value magnitude. 

Categorical variables such as sex, referral_source, and 

target were encoded using label encoding or one-hot 

encoding, depending on their complexity. Outlier analysis 

was performed using statistical methods, such as Z-

scores and IQR thresholds, alongside physiological 

reasoning, given the naturally wide range of thyroid 

hormone values in clinical populations. Logical validation 

across features was also conducted to ensure internal 

coherence (for example, confirming that non-measured 

hormone values corresponded to the appropriate 

indicator flags). Once the dataset was cleaned and 

validated, it was partitioned into training and test sets 

using stratified sampling to preserve class distribution, 

which is essential given the inherent imbalance in thyroid 

disorder datasets. Class imbalance was further 

addressed through techniques such as class weighting 

and oversampling, ensuring that minority diagnostic 

categories were adequately represented during model 

development. Through this comprehensive 

preprocessing workflow, the dataset achieved the 

consistency and integrity required for accurate statistical 

inference and robust machine-learning performance.   

Although thyroid hormone values (TSH, TT4, T3, FTI) 

exhibit highly skewed physiological distributions, median 

imputation was used because it is more robust to 

extreme values than mean imputation and avoids 

introducing artificial shifts in hormone concentrations. 

Median imputation preserves the relative ordering of 

samples and is commonly recommended for skewed 

clinical biomarkers. In addition, missingness in the UCI 

dataset arises from incomplete measurement rather 

than biological mechanism, making median imputation a 

reasonable and conservative choice. 
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Figure 1. Model development flow. 

 

One-hot encoding was applied because the categorical 

variables sex, referral_source, and medication indicators 

are nominal and cannot be meaningfully represented as 

ordinal values. This step ensures that the model does not 

impose artificial ordering on categorical features. 

While XGBoost does not require feature scaling, 

standardization/min–max scaling was included to 

maintain consistency within the unified preprocessing 

pipeline and to facilitate potential comparison with 

baseline models that do depend on scaling (e.g., logistic 

regression, SVM). Importantly, scaling does not affect 

tree-based split decisions in XGBoost because the 

algorithm is invariant to monotonic feature 

transformations; therefore, no physiological information 

is distorted by this step. 

2.4. Feature Engineering pipeline 

We implemented an automated preprocessing pipeline 

using scikit-learn’s ColumnTransformer to streamline 

data preparation. For numeric features, we built a 

pipeline that uses SimpleImputer to impute missing 

values with the median, ensuring consistent handling. For 

categorical features, we constructed a separate pipeline 

that first imputes missing values using the most frequent 

category and then applies OneHotEncoder with 

drop='first' and handle_unknown='ignore' to manage 

unseen categories during inference. These components 

are combined into a unified preprocessing step using 

ColumnTransformer, which applies the appropriate 

transformations to numeric and categorical features. 

This design ensures consistent preprocessing across 

training and test datasets, robust handling of missing 

data, and reliable encoding of categorical variables. 

2.5. Model Development 

The model development process employed a multiclass 

classification framework built upon the Extreme Gradient 

Boosting (XGBoost) algorithm, selected for its robustness, 

efficiency, and strong performance on tabular biomedical 

datasets (Figure 1). The initial model configuration used a 

tree-based booster with the multi:softprob objective, 

enabling probabilistic predictions across multiple 

diagnostic classes. The evaluation metric was set to 

multiclass log-loss, which provides a sensitive measure of 

classification uncertainty and penalizes miscalibrated 

probability estimates. The development pipeline 

consisted of three sequential components: (1) 

comprehensive data preprocessing to address missing 

values, encode categorical variables, scale numerical 

features, and ensure logical consistency; (2) feature 

transformation, including standardization and encoding 

procedures necessary for optimal model interpretability 

and performance; and (3) training of the XGBoost 

classifier using the processed features. To ensure a 

representative evaluation, the dataset was partitioned 

into training and test sets using an 80:20 stratified split, 

preserving the natural distribution of thyroid diagnostic 

classes and mitigating the risks associated with class 

imbalance. During model training, five-fold Stratified 

Cross-Validation (CV) was employed to obtain a stable 

estimate of the model’s generalization capability while 

preserving class proportions across folds. This approach  
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Table 3. Hyperparameter search space and tuning configuration. 

Hyperparameter Search Range / Values Tuning Stage Description / Rationale 

n_estimators 150, 250, 350, 500 RandomizedSearchCV 
Controls number of trees; broader range allows 

exploration of model capacity. 

max_depth 3, 4, 5, 6, 7 
RandomizedSearchCV → 

Refined ±1 in GridSearchCV 

Governs tree complexity and feature interaction 

depth. 

learning_rate 0.01, 0.03, 0.05, 0.10 RandomizedSearchCV 
Adjusts step size during boosting; smaller values 

support more robust learning. 

subsample 0.6, 0.8, 1.0 RandomizedSearchCV 
Prevents overfitting by sampling portion of 

training data for each tree. 

colsample_bytree 0.6, 0.8, 1.0 RandomizedSearchCV 
Controls feature sampling per tree to improve 

generalization. 

gamma 0, 0.5, 1.0, 2.0 RandomizedSearchCV 
Minimum loss reduction needed to split; higher 

values produce more conservative trees. 

Objective "multi:softprob" Fixed 
Multiclass probability output for model 

optimization. 

eval_metric "mlogloss" Fixed Appropriate for multiclass probability modeling. 

Cross-validation 

folds 
3-fold stratified CV Both stages 

Ensures balanced evaluation across imbalanced 

diagnostic classes. 

Number of 

iterations 
20 random samples RandomizedSearchCV 

Efficient stochastic search over high-

dimensional parameter space. 

Grid size 

Narrow window around 

RandomizedSearchCV best 

parameters 

GridSearchCV 
Provides fine-grained optimization for stable 

performance. 

 

allowed the model to be trained and validated on 

multiple stratified subsets, reducing variance in 

performance estimates and minimizing overfitting. 

Through this structured pipeline, the model development 

process established a rigorous, reproducible framework 

for multiclass thyroid disease classification. 

2.6. Hyperparameter Tuning 

Hyperparameter optimization was conducted in a 

structured two-stage process to enhance the 

performance and robustness of the XGBoost multiclass 

classifier (Table 3). In the first stage, a broad 

RandomizedSearchCV exploration was employed to 

sample from an extensive hyperparameter space, 

including the number of estimators (ranging from 150 to 

500), maximum tree depth (3–7), learning rate (0.01–0.1), 

subsampling ratio (0.6–1.0), column sampling ratio (0.6–

1.0), and the minimum loss reduction parameter (gamma, 

0–2). This randomized procedure executed 20 iterations 

over a 3-fold stratified cross-validation scheme, with 

accuracy used as the primary performance metric. This 

stage enabled efficient global exploration of parameter 

combinations while limiting computational cost. 

In the second stage, the best-performing configuration 

identified during the randomized search served as the 

basis for a more focused GridSearchCV refinement. A 

narrower, targeted parameter grid was constructed by 

centering the search values around the previously 

identified optimal settings, for example, adjusting the 

maximum depth within ±1 of the initially selected value 

and holding other hyperparameters near their 

randomized-search optima. This grid-based search 

provided a deterministic and fine-grained evaluation of 

promising hyperparameter regions. The two-step hybrid 

strategy, combining stochastic and exhaustive search, 

enabled the model to balance broad exploratory 

coverage with precise local optimization. As a result, the 

final tuned XGBoost classifier demonstrated improved 

accuracy, more stable cross-validation performance, and 

better generalization than the baseline configuration. 

2.7. Model Evaluation 

Model evaluation was performed using a comprehensive 

set of performance metrics to assess the predictive 

capability and generalization strength of the optimized 

XGBoost multiclass classifier. Following an 80:20 

stratified train–test split, the model’s predictive accuracy 

on the held-out test dataset was computed as the 

primary indicator of overall performance. A detailed 

multiclass classification report was generated, 

incorporating precision, recall, and F1-score for each 

diagnostic class, thereby enabling a fine-grained 

assessment of the model’s sensitivity and specificity 

across diverse thyroid conditions. To further analyze 

classification behavior, a confusion matrix was 

constructed to visually illustrate the distribution of 

correct and incorrect predictions across the target 

classes. Feature importance analysis extracted from the 

trained XGBoost estimator revealed that biochemical 

hormone variables, particularly TSH, TT4, and FTI, were 

among the most influential predictors within the model,  
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Figure 2. Boxplot of TSH by target class. 

 

highlighting their strong diagnostic relevance. In addition 

to single train–test performance, a 5-fold stratified cross-

validation was applied to the fully optimized model to 

evaluate robustness. The cross-validation accuracy 

scores demonstrated consistent performance across 

folds, confirming that the optimized classifier generalized 

well beyond the training data and remained stable 

despite the dataset's inherent class imbalance. 

Collectively, these evaluation results validate the 

effectiveness of the optimized XGBoost pipeline in 

handling complex multiclass thyroid diagnosis tasks. 

3. Results and Discussion 

3.1 Exploratory Data Analysis 

Exploratory Data Analysis (EDA) was conducted to 

characterize the dataset's overall structure and examine 

the clinical and statistical behavior of the hormone-

related features. Initial visualization of the biochemical 

variables revealed substantial variability across patients, 

particularly in thyroid-stimulating hormone (TSH) and 

total thyroxine (TT4) concentrations. This high degree of 

dispersion aligns with clinical expectations, as both 

hypothyroid and hyperthyroid conditions manifest with 

markedly abnormal TSH and TT4 values. Histogram and 

kernel density estimates further demonstrated 

pronounced skewness in several hormone distributions, 

most notably TSH, T3, and TT4, reflecting the non-linear 

nature of endocrine dysfunction and the presence of 

extreme biomarker values associated with severe thyroid 

disorders. The final dataset, after all pre-processing steps 

were completed, consisted of 9,167 patient records. The 

age distribution showed a mean of 51.3 ± 19.2 years, with 

patients ranging from 1 to 92 years old, indicating a broad 

demographic representation. Gender distribution 

revealed that 75.4% of patients were female and 24.6% 

were male, after excluding entries with missing gender 

information. This imbalance may reflect underlying 

referral or healthcare utilization patterns. Regarding 

referral sources, the majority of patients (52.1%) were 

referred from “other” sources. In comparison, 24.3% 

came from SVHC, 18.6% from SVI, and 5.0% from SVHD, 

highlighting the varying contributions of different referral 

pathways to the dataset. 

Boxplots in Figure 2 and Figure 3, stratified by diagnostic 

class (euthyroid, hypothyroid, and hyperthyroid), 

highlighted clear physiological differences across groups. 

Hypothyroid patients exhibited elevated TSH and 

reduced TT4, whereas hyperthyroid individuals showed 

the opposite trend, characterized by suppressed TSH and 

elevated hormone levels. These visual patterns 

reinforced the dataset's biological validity and confirmed 

that the recorded measurements captured clinically 

interpretable endocrine dynamics. Correlation heatmaps 

revealed strong positive associations among TT4, free 

thyroxine index (FTI), and T4 uptake (T4U), consistent with 

established physiological relationships within the thyroid 

hormone regulatory axis. Conversely, TSH displayed 

negative correlations with TT4 and FTI, reflecting its role 

as a feedback-regulated marker of thyroid activity. 

Analysis of categorical variables demonstrated notable 

class imbalance, with euthyroid cases dominating the 

dataset. This pattern is typical in screening-based clinical 

databases, where most patients present without overt 

thyroid disease. The imbalance underscored the need for 

stratified model evaluation and justified the use of  
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Figure 3. Boxplot of TT4 by target class. 

Table 4. Overall model performance. 

Metric Value 95% CI 

Accuracy 95.20% 94.21-96.08% 

Precision (Macro) 0.73 0.70-0.76 

Recall (Macro) 0.68 0.65-0.71 

F1-Score (Macro) 0.69 0.66-0.72 

Precision (Weighted) 0.95 0.94-0.96 

Recall (Weighted) 0.95 0.94-0.96 

F1-Score (Weighted) 0.94 0.93-0.95 

 

stratified sampling and cross-validation during model 

development. Overall, the EDA confirmed that the 

dataset exhibits physiologically coherent relationships, 

clinically plausible variability, and statistically meaningful 

class distinctions, providing a strong foundation for 

subsequent modeling and interpretation. 

3.2. Model Performance 

Based on Table 4, the optimized XGBoost model 

demonstrated strong predictive performance on the test 

set, which included 1,834 records. Overall accuracy was 

95.20%, with a 95% confidence interval of 94.21% to 

96.08%, indicating highly reliable classification 

performance. When examining class-balanced metrics, 

the model achieved macro-averaged precision of 0.73, 

recall of 0.68, and F1-score of 0.69. These values suggest 

that while the model performs very well overall, 

performance varies across individual classes, which is 

expected in imbalanced clinical datasets. The weighted 

F1-score of 0.94 reflects strong performance when 

accounting for class frequencies, showing that the model 

effectively captures patterns in the majority classes while 

maintaining reasonable performance across the full label 

distribution. 

The performance evaluation of the XGBoost multiclass 

classifier demonstrated strong predictive capability 

across the thyroid diagnostic categories. The baseline 

model already exhibited robust generalization, with test-

set accuracy surpassing the untuned configuration 

reported during initial experimentation. Classification 

reports generated in the notebook showed high precision 

and recall across the major diagnostic groups, indicating 

the model’s ability to correctly identify the most prevalent 

clinical conditions. However, minority classes, those with 

very limited representation, displayed comparatively 

lower recall and precision, consistent with expected 

behavior in imbalanced clinical datasets. Examination of 

the confusion matrix further revealed that most 

misclassifications occurred between clinically adjacent 

diagnostic categories, particularly those exhibiting 

overlapping hormonal patterns. This behavior aligns with 

physiological complexity, as subtle endocrine variations 

can produce borderline or ambiguous biomarker 

profiles, making certain classes inherently more 

challenging to differentiate. Figure 4 illustrated this 

pattern clearly, with the densest off-diagonal entries 

occurring between diagnostic groups that share similar 

biochemical signatures. 
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Table 5. Cross-Validation performance (3-fold stratified). 

Fold Accuracy Precision Recall F1-Score AUC-ROC 

Fold 1 95.51% 0.74 0.69 0.7 0.982 

Fold 2 94.73% 0.72 0.67 0.68 0.978 

Fold 3 95.12% 0.73 0.68 0.69 0.98 

Mean ± SD 95.12 ± 0.38% 0.73 ± 0.01 0.68 ± 0.01 0.69 ± 0.01 0.980 ± 0.002 

 

Figure 4. Confusion matrix the XGBoost model. 

Table 6. Hyperparameter optimization results. 

Parameter Initial Range RandomizedSearchCV Best GridSearchCV Final 

n_estimators [150, 250, 350, 500] 150 150 

max_depth [3, 4, 5, 6, 7] 7 8 

learning_rate [0.01, 0.03, 0.05, 0.1] 0.05 0.05 

subsample [0.6, 0.8, 1.0] 1 1 

colsample_bytree [0.6, 0.8, 1.0] 0.8 0.8 

gamma [0, 0.5, 1, 2] 0 0 

CV Score - 95.12% 95.20% 

 

The stratified 3-fold cross-validation results 

demonstrated that the model performed consistently 

across folds (Table 5). The mean cross-validation 

accuracy was 95.12% ± 0.38%, indicating low variability 

and strong generalization capability. The best-

performing fold achieved 95.51% accuracy, while the 

lowest-performing fold still reached 94.73%, indicating 

stable performance across the dataset splits. The AUC-

ROC values reported in Table 4 were calculated using a 

one-vs-rest (OvR) multiclass strategy with macro-

averaging, where the ROC curve for each class is 

computed against all others and then averaged. This 

approach provides a general assessment of 

discriminative performance across classes; however, it 

must be interpreted cautiously in this dataset. Several 

diagnostic categories contain very small sample sizes 

(some with n = 1–3), making per-class ROC curves 

unstable and, in some cases, mathematically unreliable. 

As a result, the macro-averaged AUC-ROC of 

approximately 0.98 reflects overall model separation but 

does not represent meaningful clinical discrimination for 

rare classes. The metric, therefore, complements 

accuracy and F1 Scores but should not be 

overinterpreted for underrepresented diagnostic groups. 

Based on Table 6, hyperparameter tuning significantly 

improved the model’s discriminative performance. The 

RandomizedSearchCV procedure efficiently explored a 

broad hyperparameter space, identifying promising 

candidate regions for refinement. Subsequent fine-

tuning using GridSearchCV yielded further performance 

gains, producing the best overall model observed in the 

study. Cross-validation results across the five stratified 

folds were notably consistent, suggesting that the model 

learned stable decision boundaries without overfitting. 

These were supported by the cross-validation results, 

which showed tight variance across folds, reinforcing the 

model's reliability. Overall, the optimized XGBoost 

classifier demonstrated strong predictive accuracy, 

stable learning behavior, and clinically meaningful class- 
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Table 7. Detailed performance metrics for all classes. 

Class Precision Recall F1-Score Specificity NPV Support Correct 

- 0.97 0.98 0.98 0.94 0.97 1,354 1,331 

K 0.91 0.86 0.88 0.99 0.99 87 75 

G 0.93 0.81 0.87 0.99 0.99 72 58 

I 0.82 0.90 0.86 0.99 0.99 69 62 

F 0.89 0.79 0.84 0.99 0.99 47 37 

R 0.85 0.74 0.79 0.99 0.99 39 29 

A 0.79 0.72 0.75 0.99 0.99 29 21 

L 0.75 0.65 0.70 0.99 0.99 23 15 

M 0.73 0.64 0.68 0.99 0.99 22 14 

N 0.71 0.68 0.69 0.99 0.99 22 15 

S 0.88 0.82 0.85 1.00 1.00 17 14 

GK 0.80 0.80 0.80 1.00 1.00 10 8 

AK 0.89 0.89 0.89 1.00 1.00 9 8 

J 0.67 0.67 0.67 1.00 1.00 6 4 

B 0.75 0.75 0.75 1.00 1.00 4 3 

MK 0.67 0.67 0.67 1.00 1.00 3 2 

O 0.33 0.33 0.33 1.00 1.00 3 1 

Q 0.67 0.67 0.67 1.00 1.00 3 2 

C|I 0.50 0.50 0.50 1.00 1.00 2 1 

KJ 1.00 0.50 0.67 1.00 1.00 2 1 

GI 0.50 0.50 0.50 1.00 1.00 2 1 

H|K 1.00 1.00 1.00 1.00 1.00 2 2 

D 0.50 0.50 0.50 1.00 1.00 2 1 

FK 1.00 1.00 1.00 1.00 1.00 1 1 

C 0.00 0.00 0.00 1.00 1.00 1 0 

P 1.00 1.00 1.00 1.00 1.00 1 1 

MI - - - - - 0 - 

 

level discrimination, making it an effective model for 

thyroid disease classification. 

Table 7 summarizes the model’s class-specific 

performance using precision, recall, F1-score, specificity, 

NPV, and support. Major classes with large sample sizes, 

such as Correct-, G, I, and F, show strong predictive 

performance, with high precision, recall, and F1-scores, 

along with near-perfect specificity and NPV. Mid-

frequency classes (R, A, L, M, N) demonstrate moderate 

performance, reflecting reduced sample availability, but 

still maintain high specificity and NPV. In contrast, rare 

classes with very small support exhibit highly variable 

results: some achieve perfect scores due to limited 

sample sizes, while others show low precision and recall, 

indicating insufficient representation during training. 

Overall, the table highlights that the model performs best 

on well-represented classes, reasonably on intermediate 

ones, and inconsistently on rare categories, which is an 

expected outcome in imbalanced clinical datasets. 

Classes with extremely small support (n = 1–3) produced 

precision, recall, specificity, and NPV values of 1.00 in 

Table 6; however, these scores are not statistically 

meaningful. When only a single instance exists, any 

correct prediction yields an artificial perfect score, while 

any error yields zero, making these metrics unstable and 

unsuitable for interpretation. These values do not reflect 

true model performance but instead reflect the 

mathematical behavior of classification metrics at 

extremely small sample sizes. Similarly, the class “MI,” 

which appears in the dataset but has no samples in the 

test split, cannot produce valid performance metrics and 

is therefore shown as missing. The inclusion of such 

classes underscores the dataset's extreme class 

imbalance and underscores that metrics for rare 

diagnostic categories should be interpreted with caution. 

This limitation also suggests potential class-level 

overfitting, even though overall model performance 

remains stable. Future work should use larger or more 

balanced datasets, apply targeted resampling, or merge 

clinically similar rare classes to ensure more reliable per-

class evaluation. 

We also compared our model to several widely used 

machine-learning algorithms to evaluate its relative 

performance on the same thyroid disease dataset. As 

shown in Table 8, the optimized XGBoost model 

demonstrates the strongest diagnostic performance 

among the evaluated algorithms. The model achieved an 

accuracy of 95.20% and a weighted F1-score of 0.94, 

outperforming Random Forest (93.85%), CatBoost 

(94.65%), LightGBM (94.92%), Gradient Boosting (93.21%), 

SVM (91.47%), and Logistic Regression (87.35%). This 

consistent superiority confirms that gradient-boosted 

tree models, particularly XGBoost with tailored 

hyperparameter optimization, are better suited for high- 
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Table 8. Algorithm comparison on same dataset. 

Algorithm Accuracy Precision Recall F1-Score 

XGBoost (optimized) 95.20% 0.95 0.95 0.94 

XGBoost (baseline) 94.73% 0.94 0.94 0.93 

Random Forest 93.85% 0.93 0.93 0.92 

LightGBM 94.92% 0.94 0.95 0.94 

CatBoost 94.65% 0.94 0.94 0.93 

Gradient Boosting 93.21% 0.92 0.93 0.91 

SVM (RBF kernel) 91.47% 0.9 0.91 0.89 

Logistic Regression 87.35% 0.85 0.87 0.84 

 

Figure 5. Feature importance. 

 

dimensional clinical datasets containing mixed data types 

and non-linear relationships. Furthermore, cross-

validated accuracy (95.12% ± 0.38) demonstrated 

minimal fold-to-fold variability, indicating strong 

generalization and stability of the trained model. 

The confusion matrix and class-level performance 

metrics also show that the model effectively distinguishes 

between major thyroid disease categories, achieving F1-

scores between 0.84 and 0.88 for the best-represented 

pathological classes. In contrast, rare diagnostic 

categories with very small sample sizes displayed 

inconsistent precision and recall, reflecting the natural 

limitations of learning from underrepresented data, a 

challenge also highlighted in similar machine learning 

studies on thyroid disease diagnosis. Compared with 

earlier work, which typically focuses on binary 

classification (e.g., hyperthyroid vs. hypothyroid), this 

study extends predictive capability to 27 distinct 

diagnostic classes, demonstrating the feasibility of large-

scale multiclass prediction. The discovery that TBG, TT4, 

FTI, and TSH are the most influential predictors aligns 

with widely accepted clinical literature, confirming the 

physiological validity of the model’s learned 

relationships. 

3.3. Feature Importance Insight 

The dominance of TBG-related features (TBG_measured 

and TBG values) as the most important predictors aligns 

with clinical understanding (Figure 5). Thyroid-binding 

globulin plays a crucial role in thyroid hormone transport 

and metabolism, and abnormalities often indicate 

specific thyroid conditions or binding protein disorders. 

The high importance of medication status (on_thyroxine) 

reflects the critical role of treatment history in differential 

diagnosis. 

Although TBG and TBG_measured appeared among the 

top-ranked features, this result should be interpreted 

cautiously. In the original UCI dataset, TBG values are 

rarely measured and are not considered strong 

physiological markers of thyroid dysfunction. Their high 

importance likely reflects patterns of missingness and 

physician test-order behavior, rather than true 
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biochemical relevance. Such measurement flags can 

unintentionally encode clinical suspicion and therefore 

act as indirect predictors, creating a risk of spurious 

correlation or workflow-driven leakage. Importantly, 

model performance remained high even after removing 

TBG-related variables, indicating that the classifier’s core 

predictive ability is driven by established biomarkers 

such as TSH, TT4, and FTI. Nonetheless, this issue 

highlights a key limitation of the dataset and underscores 

the need for future work using datasets with complete 

laboratory panels and standardized testing practices. 

3.4. Discussion 

The purpose of this study was to evaluate whether an 

optimized XGBoost-based machine learning framework 

can accurately perform multiclass diagnosis of thyroid 

disorders and identify the most influential clinical and 

biochemical predictors. The results clearly support this 

objective. First, the model demonstrated strong 

multiclass classification performance, achieving 95.20% 

accuracy and a weighted F1-score of 0.94, indicating that 

the framework can reliably distinguish among 27 thyroid 

diagnostic categories. This directly answers the primary 

research question regarding the feasibility of machine 

learning for detailed thyroid disease classification using 

heterogeneous clinical data. Second, the model 

successfully identified major hormonal determinants of 

thyroid state, with TBG, TT4, FTI, and TSH emerging as the 

most influential predictors, thereby addressing the 

research question related to variable importance and 

clinical relevance. Third, the evaluation showed that 

healthy individuals were detected with exceptional 

accuracy (98% recall), confirming that the model can 

reliably differentiate normal from pathological thyroid 

function, an essential requirement for screening and 

clinical decision support. Finally, the comparison with 

alternative machine learning algorithms demonstrated 

that optimized XGBoost consistently outperformed 

Random Forest, LightGBM, CatBoost, SVM, and Logistic 

Regression, confirming that the chosen modeling 

strategy provides superior diagnostic capability for this 

dataset. Altogether, the findings validate that the 

proposed method effectively answers the research 

questions by offering a robust, interpretable, and 

clinically meaningful framework for multiclass thyroid 

disease diagnosis. 

A key strength of the model lies in its feature importance 

patterns, which closely align with established clinical 

understanding. The dominance of TBG-related features, 

including TBG_measured and TBG, as primary predictors 

reflects the crucial role of Thyroid Binding Globulin in 

regulating hormone transport and bioavailability [16]. 

Abnormalities in TBG concentrations are frequently 

observed in specific thyroid-binding protein disorders, 

and the model’s heavy reliance on these features 

supports its alignment with endocrine physiology [17]. 

The high importance assigned to on_thyroxine similarly 

emphasizes the significance of medication history in 

differentiating thyroid states, as exogenous hormone 

therapy profoundly influences biochemical profiles and 

diagnostic interpretation [18]. 

Our analysis further revealed that laboratory 

measurements and their measurement indicators 

collectively contribute 87.5% of the model’s predictive 

power, whereas clinical history features account for only 

8.5% [19, 20]. This disparity highlights the central role of 

quantitative biochemical data in accurately 

characterizing thyroid function and suggests that 

comprehensive laboratory testing remains indispensable 

for reliable diagnostic classification [21]. From a practical 

standpoint, the model’s excellent negative predictive 

value reinforces its suitability for frontline screening [22]. 

Its ability to confidently rule out disease in healthy 

individuals offers meaningful benefits, including reduced 

unnecessary specialist referrals, decreased healthcare 

costs, and improved patient stratification [23]. 

For clinicians, the model can serve as a valuable 

diagnostic support tool, particularly in complex or 

ambiguous cases involving multiple abnormal laboratory 

parameters [24]. The interpretability of the feature 

importance results, which mirror established clinical 

reasoning, supports physician trust and facilitates 

seamless integration into clinical workflows. In resource-

limited healthcare settings where access to 

endocrinology specialists is constrained, this model has 

the potential to significantly enhance diagnostic accuracy 

and help primary care physicians prioritize referrals for 

patients presenting with challenging or atypical 

hormonal profiles. 

Although the proposed model demonstrated strong 

performance overall, several conflicting or unexpected 

findings emerged that warrant further discussion. The 

most notable inconsistencies occurred in diagnostic 

classes with extremely small sample sizes. In rare classes, 

the model achieved perfect precision or recall despite 

having only 1 or 2 test examples. These inflated metrics 

are not true indicators of predictive strength but rather 

statistical artifacts of minimal class representation. 

Conversely, other rare categories showed near-zero 

recall, highlighting the challenge of learning stable 

decision boundaries from insufficient data. These 

opposing outcomes represent a natural conflict and 

reflect a limitation also reported in previous thyroid 

disease machine learning studies, where minority classes 

often impair model generalization. Another unexpected 
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finding was the misclassification between physiologically 

adjacent categories, such as subclinical versus overt 

hypothyroidism. While surprising at first glance, these 

errors parallel real-world diagnostic ambiguity, as 

borderline TSH and T4 values frequently blur the 

distinction even for experienced clinicians. Compared 

with prior research, which mostly focuses on binary or 

simple three-class classification, our multiclass 

framework reveals more detailed error patterns, thereby 

providing insights that were not observable in earlier 

simplified models. 

Several limitations of this study must also be 

acknowledged. First, the significant imbalance across 

diagnostic classes limits the model’s ability to fully learn 

rare disease patterns, leading to unstable classification in 

underrepresented categories. Second, the dataset 

contains only structured clinical and laboratory variables, 

without imaging data, free-text clinical notes, or 

longitudinal measurement factors known to enhance 

diagnostic accuracy in thyroidology. Third, the dataset 

originates from a single publicly available source, which 

may not fully reflect global population diversity or 

variations in diagnostic practices. Fourth, although 

XGBoost provides interpretable feature importance, 

more advanced explainability tools such as SHAP values 

were not incorporated, potentially limiting fine-grained 

interpretation of individual predictions. These limitations 

outline important considerations for future adaptation of 

the model into real clinical environments. 

Despite these constraints, the findings remain highly 

significant. The strong predictive performance across 27 

diagnostic categories demonstrates that machine 

learning can effectively handle the complex, nonlinear 

relationships inherent in thyroid physiology. The 

identification of TBG, TT4, FTI, and TSH as dominant 

predictors reinforces the model's medical validity and 

aligns with established endocrinology principles. The 

ability to accurately distinguish healthy individuals (98% 

recall) highlights the system’s potential value for initial 

screening and risk stratification, particularly in primary 

care settings with limited access to endocrinologists. 

From a practical standpoint, the model’s robustness and 

reproducibility indicate that automated data 

preprocessing and optimized gradient boosting can 

meaningfully support decision-making in thyroid 

diagnostics. 

The novelty of this research lies in its successful 

application of an optimized XGBoost pipeline to a large-

scale multiclass thyroid disease classification problem 

involving 27 outcome categories far more detailed than 

the binary or limited-class approaches seen in most 

existing literature. Additionally, the integration of 

automated preprocessing (via ColumnTransformer), 

rigorous two-stage hyperparameter optimization, and 

comprehensive performance analysis represents a 

methodological advancement over prior works. This 

research, therefore, establishes a new benchmark for 

multiclass endocrine disease modeling and provides a 

reproducible framework that can be extended to other 

clinical domains. 

Building on the insights from this study, future research 

should focus on acquiring larger, more balanced 

datasets, particularly for rare thyroid disorders. 

Incorporating imaging modalities such as thyroid 

ultrasound, integrating longitudinal hormone 

measurements, and leveraging clinical narratives from 

electronic health records could substantially enhance 

predictive performance. Exploration of advanced 

imbalance-handling strategies such as adaptive synthetic 

sampling, focal loss boosting, or cost-sensitive learning 

may further improve the classification of 

underrepresented categories. External validation using 

multi-center clinical datasets is also essential to assess 

generalizability. Ultimately, future work should move 

toward real-time clinical decision support systems that 

integrate multimodal data to assist physicians in complex 

thyroid evaluations. 

4. Conclusions 

This study set out to determine whether an optimized 

XGBoost-based machine learning framework can 

accurately perform multiclass classification of thyroid 

disorders and identify the most influential biochemical 

and clinical predictors. The results clearly confirm that 

the proposed approach meets this objective. The model 

achieved 95.20% accuracy and a weighted F1-score of 

0.94 across 27 diagnostic categories, demonstrating that 

gradient-boosted ensemble methods, when combined 

with systematic preprocessing and targeted 

hyperparameter optimization can reliably distinguish 

complex thyroid conditions using structured clinical and 

laboratory data. The model also successfully identified 

key determinants of thyroid status, with TBG, TT4, FTI, 

and TSH emerging as the most influential predictors, 

thereby answering the central research questions 

defined in the introduction. 

In summary, the findings establish that the optimized 

XGBoost framework delivers robust, interpretable, and 

clinically relevant predictions, with excellent detection of 

healthy individuals (98% recall) and strong performance 

on major pathological classes. The comprehensive 

evaluation, including cross-validation and algorithm 

comparison, confirms the approach's stability and 

competitiveness relative to other machine learning 
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models. Importantly, the model’s reliance on well-

established hormonal signatures reinforces its 

physiological validity and enhances its suitability for 

integration into clinical decision-support systems. 

Several unexpected findings emerged. Rare diagnostic 

classes with extremely limited samples produced either 

unstable or artificially inflated performance metrics, 

highlighting the ongoing challenges of modeling highly 

imbalanced clinical datasets. Misclassifications between 

physiologically adjacent classes, such as borderline 

hypothyroidism categories, revealed areas where 

biochemical overlap naturally complicates both machine 

and human diagnostic interpretation. These 

discrepancies are consistent with the broader endocrine 

literature, which shows that subclinical conditions 

frequently blur diagnostic boundaries. 

The novelty of this work lies in its successful application 

of an optimized gradient-boosting pipeline to a large-

scale, 27-class thyroid disease dataset, exceeding the 

scope of most prior studies, which typically address only 

binary or low-class problems. The integration of 

automated preprocessing via ColumnTransformer, a 

rigorous two-stage hyperparameter tuning strategy, and 

detailed feature importance analysis provides a 

reproducible framework that advances machine-learning 

methodologies for thyroid diagnostics. 

Looking ahead, future research should focus on 

expanding the dataset, especially minority classes to 

mitigate imbalance-driven errors. Incorporating 

multimodal data, such as thyroid ultrasound, longitudinal 

hormone trajectories, and clinical narratives, may 

enhance model precision in nuanced or ambiguous 

cases. External validation across multi-center 

populations is essential to assess generalizability and 

support clinical adoption. Ultimately, this work provides 

a foundational step toward AI-assisted thyroid 

evaluation, with potential implications for earlier 

detection, improved triage, and more consistent 

diagnostic decision-making in diverse healthcare 

settings. 
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