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Abstract 

 

This study explores the use of Quantitative Structure-Activity Relationship (QSAR) studies 

using genetic algorithm (GA) and LightGBM to search for acetylcholinesterase (AChE) 

inhibitors for Alzheimer's disease. The study uses a dataset of 6,157 AChE inhibitors and 

their IC50 values. A LightGBM model is trained and evaluated for classification 

performance. The results show that the LightGBM model achieved high performance on 

the training and testing set, with an accuracy of 92.49% and 82.47%, respectively. This 

study demonstrates the potential of GA and LightGBM in the drug discovery process for 

AChE inhibitors in Alzheimer's disease. The findings contribute to the drug discovery 

process by providing insights about AChE inhibitors that allow more efficient screening of 

potential compounds and accelerate the identification of promising candidates for 

development and therapeutic use. 

 

Copyright: © 2023 by the authors. This is an open-access article distributed under the 

terms of the Creative Commons Attribution-NonCommercial 4.0 International License. 

(https://creativecommons.org/licenses/by-nc/4.0/) 

1. Introduction 

Alzheimer's disease is a devastating neurodegenerative 

disorder that exacts a heavy toll on individuals, families, 

and society [1]. Marked by the gradual deterioration of 

cognitive functions, including memory loss, impaired 

reasoning, and behavioral changes, it poses significant 

challenges to those affected [2]. As one of the most 

prevalent forms of dementia, Alzheimer's disease affects 

millions of people worldwide, with its prevalence 

expected to rise due to the aging population [3]. The 

profound impact of this disease extends beyond the 

individual, affecting their loved ones and caregivers and 

placing a considerable burden on healthcare systems and 

society's resources. Addressing the complexities of 

Alzheimer's disease, finding effective treatments, and 

supporting those affected are necessary to improve the 
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well-being and quality of life of individuals facing this 

challenging condition. [4]. 

One of the solutions formulated to tackle this problem is 

the inhibition of acetylcholinesterase (AChE), an enzyme 

responsible for breaking down the neurotransmitter 

acetylcholine (ACh) [5]. By inhibiting AChE, the 

concentration of ACh in the inter-synaptic space can be 

significantly increased, leading to enhanced activity 

within the cholinergic system in the central nervous 

system. This approach holds promise for improving the 

functioning of neural pathways involved in memory and 

cognitive processes, offering a potential avenue for 

managing the symptoms of Alzheimer's disease and 

enhancing the quality of life for affected individuals [6, 7]. 

There is a fast and cost-effective approach to searching 

for AChE inhibitors, which involves conducting 

Quantitative Structure-Activity Relationship (QSAR) 

studies. QSAR examine the relationship between the 

chemical structure of compounds and their biological 

activities, so the researchers can predict the activity of 

AChE inhibitors, aiding in the development of more 

potent therapeutic agents for Alzheimer's disease [8–10]. 

QSAR studies is a computational drug discovery method 

[11, 12] that uses molecular descriptors to analyze the 

relationship between chemical structure and biological 

activity. These descriptors provide quantitative 

information about various molecular properties, such as 

size, shape, and electronic characteristics [13, 14]. 

However, since there can be thousands of molecular 

descriptors available for a given compound, it becomes 

crucial to select the most optimal descriptors for model 

simplicity and efficiency [15]. To simplify and speed up 

the process, genetic algorithm (GA), inspired by Darwin's 

theory, are commonly used [16, 17]. They select the most 

effective descriptors by simulating natural selection, 

gradually refining the set through iterations. This 

approach helps researchers predict the activity of AChE 

inhibitors, aiding the development of potent therapeutic 

agents for Alzheimer's disease.  

In recent years, several studies have focused on QSAR for 

AChE inhibitors [18–21]. These investigations have 

employed various statistical and machine learning 

methods, which have shown promising results in 

achieving good performance. However, there still have 

room for improvement in terms of accuracy. One 

approach that can be done is to use recent machine 

learning algorithms such as LightGBM [22]. 

In this study, we propose an approach to QSAR using GA 

for molecular descriptors selection and LightGBM to train 

the QSAR model. With GA, we aim to identify the most 

relevant and informative molecular descriptors that 

contribute significantly to the inhibitory activity of AChE 

inhibitors. Subsequently, the selected descriptors are 

utilized in conjunction with LightGBM, a powerful and 

efficient machine learning algorithm, to build a robust 

QSAR model. The combination of GA and LightGBM holds 

the potential to improve the accuracy and predictive 

performance of the QSAR models for AChE inhibitors. 

This approach holds great promise for enhancing our 

understanding of structure-activity relationships and 

facilitating the drug discovery process for Alzheimer's 

disease. 

2. Materials and Methods 

2.1. Dataset 

We collected data on 8832 AChE inhibitors from the 

ChEMBL database and their IC50 values [23]. Next, we 

removed duplicate data and left 6157 compounds. To 

carry out the classification process, we construct a class 

variable by converting the IC50 value to pIC50, and if the 

pIC50 value < 6, then the compound is assigned to an 

inactive class, and if pIC50 ≥, then the compound is active 

[24]. Among the 6157 compounds, 3591 of them (58.32%) 

were classified as inactive, and 2566 compounds (41.68%) 

were categorized as active. 

2.2. Molecular Descriptors 

In QSAR studies, molecular descriptors are used as 

features to build models. We used Mordred to derive 

1661 2D-molecular descriptors for each AChE inhibitor 

compound. Molecular descriptors with high correlation 

(>0.95) and low variance (<0.1) were eliminated, leaving 

280 molecular descriptors [24]. 

2.3. Feature Selection 

Many molecular descriptors may be unimportant or 

duplicate for the classification task, thus necessitating the 

use of a feature selection technique. Feature selection 

involves choosing a subset of pertinent features from the 

initial feature set to enhance the performance of machine 

learning models. This process aids in reducing data 

dimensionality, preventing overfitting, enhancing model 

interpretability, and decreasing the computational 

burden of training models [25]. 

In this study, we use GA to select the most optimal 

molecular descriptor due to its ability to efficiently 

explore the extensive space of possible descriptors and 

identify concise and relevant representations of chemical 

features [26, 27]. GA works by iteratively generating 

heuristic solutions that represent different subsets of 

molecular descriptors. It then evaluates the fitness of 

each individual using a predefined fitness function that 

measures how well the individual solves the problem or 
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Figure 1. The result of GA for each generation. 

 

represents the quality of the selected molecular 

descriptors [28, 29]. 

To initiate the GA-based feature selection process, we 

generated an initial population consisting of 50 random 

molecular descriptor subsets. The GA then utilized 

crossover and mutation operations to create new 

combinations of features. Crossover occurred with a 90% 

probability between selected subsets, while mutation 

took place with a 5% probability for each subset [30]. 

The GA process ran for 200 generations, evaluating the 

fitness of each subset with accuracy as the fitness 

function. Logistic regression was used as an estimator 

because of its simplicity and was run through 10-fold 

cross-validation to minimize overfitting and provide a 

more accurate estimation of the model's generalization 

ability. The best subsets became parents for the next 

generation, ensuring the gradual replacement of weaker 

subsets. To prevent the GA from getting stuck, we 

implemented a stopping criterion. If the best subset 

remained unchanged for ten consecutive generations, we 

terminated the algorithm, indicating convergence had 

been achieved [31]. 

2.4. LightGBM 

LightGBM is an efficient gradient-boosting decision tree 

method known for its exceptional computational 

efficiency and remarkable accuracy [22, 32, 33]. It 

effectively tackles complex problems by efficiently 

handling large datasets, leading to faster training and 

prediction times. With its advanced algorithms and 

optimization techniques, LightGBM consistently achieves 

superior performance, enabling precise predictions 

across various domains [34, 35]. Because of that, 

LightGBM has gained widespread popularity among data 

scientists and machine learning practitioners for its 

ability to deliver accurate results efficiently. 

2.5. Performance  Evaluation 

To assess the effectiveness of the proposed model, a 

comprehensive performance evaluation was conducted 

using four metrics: accuracy, precision, recall, and F1-

score. These metrics provide insights into the model's 

classification performance across different aspects [36]. 

3. Results and Discussion 

3.1. Genetic Algorithm Results 

In this study, the GA was used to select the most optimal 

subset of molecular descriptors. Prior to running the GA, 

the data were divided randomly into two subsets, namely 

the training set and the testing set, in an 80:20 ratio.  

The GA reached its termination point after the 40th 

generation, as there was no improvement in the fitness 

value for ten consecutive generations. The progression of 

the GA fitness value for each iteration is presented in 

Figure 1. The initial generation of GA yielded a fitness 

value of 0.698, which progressively increased to 0.753 by 

the 40th generation. 

Table 1 presents the selected molecular descriptors, 

categorized into different types. The most abundant type 

of molecular descriptor selected was Estate, with five 

molecular descriptors. EState is a molecular descriptor 

that characterizes the electronic properties of molecules, 

providing valuable insights into their chemical behavior. 

In contrast, the type with the fewest descriptors includes 

AATS and information content, each having only one 

descriptor. AATS represents atom-type autocorrelation, 

analyzing the spatial distribution and connectivity of 

specific atom types. The information content descriptor 

encompasses information-theoretic measures related to 

molecular structures. Despite their limited number, these 

descriptors provide valuable information to the GA 

algorithm-selected feature subset.
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Table 1. Selected molecular descriptors. 

Type Names Definition 

AATS AATS4dv Averaged moreau-broto autocorrelation of lag 4 weighted by valence electrons 

Carbon Types C1SP2 SP2 carbon bound to 1 other carbon 

C4SP3 SP3 carbon bound to 4 other carbons 

EState NssCH2 Number of ssCH2 

NdsCH Number of dsCH 

NssssC Number of ssssC 

NdO Number of dO 

StCH Sum of tCH 

Fragment Complexity fragCpx Fragment Complexity 

ZMIC1 1-ordered Z-modified information content 

Information Content FilterItLogS Predicted logarithm of solubility in water (LogS) using Filter-it model 

Moe Type PEOE_VSA2 MOE Charge VSA Descriptor 2 

PEOE_VSA12 MOE Charge VSA Descriptor 12 

SlogP_VSA10 MOE logP VSA Descriptor 10 

EState_VSA1 EState VSA Descriptor 1 

Ring Count nRing Number of rings 

n6aHRing Number of aromatic 6-membered rings 

nG12FRing Number of 12- or more-membered rings (including fused rings) 

n9FaRing Number of aromatic 9-membered rings 

 

Table 2. Model performance. 

Metrics Training Set (%) Testing Set (%) 

Accuracy 92.49 82.47 

Precision 91.66 80.71 

Recall 90.04 77.65 

F1-score 90.84 79.15 

Table 3. Confusion matrix of the testing set. 

Actual 
Predicted 

Inactive Active 

Inactive 606 98 

Active 118 410 

3.2. QSAR Model 

We trained the LightGBM model using the selected 

molecular descriptors and default hyperparameters. The 

model's performance was evaluated separately on the 

training set and the testing set, and the results are 

presented in Table 2. 

It can be seen that the LightGBM model achieved an 

accuracy of 92.49%, precision of 91.66%, recall of 90.04%, 

and F1-score of 90.84% for the training set. On the testing 

set, the LightGBM model achieved an accuracy of 82.47%, 

precision of 80.71%, recall of 77.65%, and F1-score of 

79.15%. Compared to the results from the training set, 

there is a slight decrease in performance, indicating that 

the model might be overfitting and encountering some 

difficulty in generalizing to new, unseen data. 

The confusion matrix of the testing set is presented in 

Table 3. This result shows that there were 606 

compounds correctly classified as inactive and 98 

instances incorrectly classified as active. Furthermore, 

there were 118 instances incorrectly classified as inactive 

and 410 instances correctly classified as active. The 

LightGBM model correctly classified 77.65% active 

compounds and 86.08% inactive compounds. 

For further analysis, we explored the feature importance 

of our LightGBM model using the split method, which is 

presented in Figure 2. This method involves counting the 

number of times each feature is used to split the data 

across all the trees in the ensemble. Features with higher 

counts are considered more important, as they play a 

more frequent role in the decision-making process of the 

model. Among the descriptors, AATS4dv emerged as the 

most important, with a high importance score of 405, 

which indicates that AATS4dv has a significant impact on 

the model's output and plays a crucial role in the 

predictive capabilities of the model. AATS4dv represents 

the Averaged Moreau-Broto Autocorrelation of lag 4 

weighted by valence electrons. It captures specific spatial 

arrangements and electron distributions within the 

molecule. On the other hand, the descriptor C4SP3 

exhibited the lowest importance score of 15, suggesting 

that it has relatively less influence on the model's 

predictions compared to other molecular descriptors. 
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Figure 2. Feature importance of the LightGBM model. 

 

C4SP3 refers to a carbon atom bound to four other 

carbon atoms with a tetrahedral (SP3) geometry. 

3.3. Limitation of This Study 

While this study provides valuable insights into the 

application of GA and LightGBM in the search for AChE 

inhibitors for Alzheimer's disease, it is important to 

acknowledge certain limitations. The generalizability of 

the LightGBM model's performance is dependent on the 

dataset used, which may not fully represent the diversity 

of AChE inhibitors. Additionally, the study lacks 

experimental validation of the predicted inhibitory 

activity, necessitating further experimental studies for 

confirmation and assessment of actual potency and 

efficacy. These limitations emphasize the need for future 

research to address these challenges and broaden our 

understanding of effective AChE inhibitors for 

Alzheimer's disease. 

4. Conclusions 

This study demonstrates the effectiveness of combining 

GA and LightGBM in the search for AChE inhibitors for 

Alzheimer's disease. By using GA for feature selection, 

the study identifies the most relevant molecular 

descriptors to predict AChE inhibitory activity. The 

LightGBM model trained on these selected descriptors 

achieves high performance. However, there is a 

possibility of overfitting, as the model's performance on 

the testing data is slightly lower than that on the training 

data. For future studies, it is recommended to fine-tune 

hyperparameters and enhance regularization techniques 

to achieve a more balanced trade-off between model 

complexity and generalization. This approach can help 

mitigate overfitting issues and improve the model's 

ability to perform well on unseen data. Overall, the 

findings highlight the potential of these methods for drug 

discovery efforts for Alzheimer's disease. 
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