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1. Introduction millions of people worldwide, with its prevalence
expected to rise due to the aging population [3]. The
profound impact of this disease extends beyond the
individual, affecting their loved ones and caregivers and
placing a considerable burden on healthcare systems and
society's resources. Addressing the complexities of
Alzheimer's disease, finding effective treatments, and
supporting those affected are necessary to improve the

Alzheimer's disease is a devastating neurodegenerative
disorder that exacts a heavy toll on individuals, families,
and society [1]. Marked by the gradual deterioration of
cognitive functions, including memory loss, impaired
reasoning, and behavioral changes, it poses significant
challenges to those affected [2]. As one of the most
prevalent forms of dementia, Alzheimer's disease affects
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well-being and quality of life of individuals facing this
challenging condition. [4].

One of the solutions formulated to tackle this problem is
the inhibition of acetylcholinesterase (AChE), an enzyme
responsible for breaking down the neurotransmitter
acetylcholine (ACh) [5]. By inhibiting AChE, the
concentration of ACh in the inter-synaptic space can be
significantly increased, leading to enhanced activity
within the cholinergic system in the central nervous
system. This approach holds promise for improving the
functioning of neural pathways involved in memory and
cognitive processes, offering a potential avenue for
managing the symptoms of Alzheimer's disease and
enhancing the quality of life for affected individuals [6, 7].

There is a fast and cost-effective approach to searching
for AChE inhibitors, which involves conducting
Quantitative  Structure-Activity Relationship (QSAR)
studies. QSAR examine the relationship between the
chemical structure of compounds and their biological
activities, so the researchers can predict the activity of
AChE inhibitors, aiding in the development of more
potent therapeutic agents for Alzheimer's disease [8-10].

QSAR studies is a computational drug discovery method
[11, 12] that uses molecular descriptors to analyze the
relationship between chemical structure and biological
activity. These descriptors provide quantitative
information about various molecular properties, such as
size, shape, and electronic characteristics [13, 14].
However, since there can be thousands of molecular
descriptors available for a given compound, it becomes
crucial to select the most optimal descriptors for model
simplicity and efficiency [15]. To simplify and speed up
the process, genetic algorithm (GA), inspired by Darwin's
theory, are commonly used [16, 17]. They select the most
effective descriptors by simulating natural selection,
gradually refining the set through iterations. This
approach helps researchers predict the activity of AChE
inhibitors, aiding the development of potent therapeutic
agents for Alzheimer's disease.

In recent years, several studies have focused on QSAR for
AChE inhibitors [18-21]. These investigations have
employed various statistical and machine learning
methods, which have shown promising results in
achieving good performance. However, there still have
room for improvement in terms of accuracy. One
approach that can be done is to use recent machine
learning algorithms such as LightGBM [22].

In this study, we propose an approach to QSAR using GA
for molecular descriptors selection and LightGBM to train
the QSAR model. With GA, we aim to identify the most
relevant and informative molecular descriptors that

contribute significantly to the inhibitory activity of AChE
inhibitors. Subsequently, the selected descriptors are
utilized in conjunction with LightGBM, a powerful and
efficient machine learning algorithm, to build a robust
QSAR model. The combination of GA and LightGBM holds
the potential to improve the accuracy and predictive
performance of the QSAR models for AChE inhibitors.
This approach holds great promise for enhancing our
understanding of structure-activity relationships and
facilitating the drug discovery process for Alzheimer's
disease.

2. Materials and Methods
2.1. Dataset

We collected data on 8832 AChE inhibitors from the
ChEMBL database and their ICso values [23]. Next, we
removed duplicate data and left 6157 compounds. To
carry out the classification process, we construct a class
variable by converting the I1C50 value to pIC50, and if the
plCso value < 6, then the compound is assigned to an
inactive class, and if pICso 2, then the compound is active
[24]. Among the 6157 compounds, 3591 of them (58.32%)
were classified as inactive, and 2566 compounds (41.68%)
were categorized as active.

2.2. Molecular Descriptors

In QSAR studies, molecular descriptors are used as
features to build models. We used Mordred to derive
1661 2D-molecular descriptors for each AChE inhibitor
compound. Molecular descriptors with high correlation
(>0.95) and low variance (<0.1) were eliminated, leaving
280 molecular descriptors [24].

2.3. Feature Selection

Many molecular descriptors may be unimportant or
duplicate for the classification task, thus necessitating the
use of a feature selection technique. Feature selection
involves choosing a subset of pertinent features from the
initial feature set to enhance the performance of machine
learning models. This process aids in reducing data
dimensionality, preventing overfitting, enhancing model
interpretability, and decreasing the computational
burden of training models [25].

In this study, we use GA to select the most optimal
molecular descriptor due to its ability to efficiently
explore the extensive space of possible descriptors and
identify concise and relevant representations of chemical
features [26, 27]. GA works by iteratively generating
heuristic solutions that represent different subsets of
molecular descriptors. It then evaluates the fitness of
each individual using a predefined fitness function that
measures how well the individual solves the problem or
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Figure 1. The result of GA for each generation.

represents the quality of the selected molecular
descriptors [28, 29].

To initiate the GA-based feature selection process, we
generated an initial population consisting of 50 random
molecular descriptor subsets. The GA then utilized
crossover and mutation operations to create new
combinations of features. Crossover occurred with a 90%
probability between selected subsets, while mutation
took place with a 5% probability for each subset [30].

The GA process ran for 200 generations, evaluating the
fitness of each subset with accuracy as the fitness
function. Logistic regression was used as an estimator
because of its simplicity and was run through 10-fold
cross-validation to minimize overfitting and provide a
more accurate estimation of the model's generalization
ability. The best subsets became parents for the next
generation, ensuring the gradual replacement of weaker
subsets. To prevent the GA from getting stuck, we
implemented a stopping criterion. If the best subset
remained unchanged for ten consecutive generations, we
terminated the algorithm, indicating convergence had
been achieved [31].

2.4. LightGBM

LightGBM is an efficient gradient-boosting decision tree
method known for its exceptional computational
efficiency and remarkable accuracy [22, 32, 33]. It
effectively tackles complex problems by efficiently
handling large datasets, leading to faster training and
prediction times. With its advanced algorithms and
optimization techniques, LightGBM consistently achieves
superior performance, enabling precise predictions
across various domains [34, 35]. Because of that,
LightGBM has gained widespread popularity among data
scientists and machine learning practitioners for its
ability to deliver accurate results efficiently.

2.5. Performance Evaluation

To assess the effectiveness of the proposed model, a
comprehensive performance evaluation was conducted
using four metrics: accuracy, precision, recall, and F1-
score. These metrics provide insights into the model's
classification performance across different aspects [36].

3. Results and Discussion
3.1. Genetic Algorithm Results

In this study, the GA was used to select the most optimal
subset of molecular descriptors. Prior to running the GA,
the data were divided randomly into two subsets, namely
the training set and the testing set, in an 80:20 ratio.

The GA reached its termination point after the 40th
generation, as there was no improvement in the fitness
value for ten consecutive generations. The progression of
the GA fitness value for each iteration is presented in
Figure 1. The initial generation of GA yielded a fitness
value of 0.698, which progressively increased to 0.753 by
the 40th generation.

Table 1 presents the selected molecular descriptors,
categorized into different types. The most abundant type
of molecular descriptor selected was Estate, with five
molecular descriptors. EState is a molecular descriptor
that characterizes the electronic properties of molecules,
providing valuable insights into their chemical behavior.
In contrast, the type with the fewest descriptors includes
AATS and information content, each having only one
descriptor. AATS represents atom-type autocorrelation,
analyzing the spatial distribution and connectivity of
specific atom types. The information content descriptor
encompasses information-theoretic measures related to
molecular structures. Despite their limited number, these
descriptors provide valuable information to the GA
algorithm-selected feature subset.
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Table 1. Selected molecular descriptors.

Type Names Definition
AATS AATS4dv Averaged moreau-broto autocorrelation of lag 4 weighted by valence electrons
Carbon Types C1SP2 SP2 carbon bound to 1 other carbon

C4SP3 SP3 carbon bound to 4 other carbons
EState NssCH2 Number of ssCH2

NdsCH Number of dsCH

NssssC Number of ssssC

NdO Number of dO

StCH Sum of tCH
Fragment Complexity fragCpx Fragment Complexity

ZMIC1T 1-ordered Z-modified information content
Information Content FilterltLogS Predicted logarithm of solubility in water (LogS) using Filter-it model
Moe Type PEQE_VSA2 MOE Charge VSA Descriptor 2

PEOE_VSA12 MOE Charge VSA Descriptor 12

SlogP_VSA10 MOE logP VSA Descriptor 10

EState_VSA1 EState VSA Descriptor 1
Ring Count nRing Number of rings

néaHRing Number of aromatic 6-membered rings

nG12FRing Number of 12- or more-membered rings (including fused rings)

n9FaRing Number of aromatic 9-membered rings

Table 2. Model performance. The confusion matrix of the testing set is presented in

Metrics Training Set (%) Testing Set (%) Table 3. This result shows that there were 606
Accuracy 92.49 82.47 compounds correctly classified as inactive and 98
Precision 91.66 80.71 instances incorrectly classified as active. Furthermore,
Ef_csacl(ljre gg:gi ;_7;?2 there were 118 instances incorrectly classified as inactive

Table 3. Confusion matrix of the testing set.

Predicted
Actual " "
Inactive Active
Inactive 606 98
Active 118 410

3.2. QSAR Model

We trained the LightGBM model using the selected
molecular descriptors and default hyperparameters. The
model's performance was evaluated separately on the
training set and the testing set, and the results are
presented in Table 2.

It can be seen that the LightGBM model achieved an
accuracy of 92.49%, precision of 91.66%, recall of 90.04%,
and F1-score of 90.84% for the training set. On the testing
set, the LightGBM model achieved an accuracy of 82.47%,
precision of 80.71%, recall of 77.65%, and F1-score of
79.15%. Compared to the results from the training set,
there is a slight decrease in performance, indicating that
the model might be overfitting and encountering some
difficulty in generalizing to new, unseen data.

and 410 instances correctly classified as active. The
LightGBM model correctly classified 77.65% active
compounds and 86.08% inactive compounds.

For further analysis, we explored the feature importance
of our LightGBM model using the split method, which is
presented in Figure 2. This method involves counting the
number of times each feature is used to split the data
across all the trees in the ensemble. Features with higher
counts are considered more important, as they play a
more frequent role in the decision-making process of the
model. Among the descriptors, AATS4dv emerged as the
most important, with a high importance score of 405,
which indicates that AATS4dv has a significant impact on
the model's output and plays a crucial role in the
predictive capabilities of the model. AATS4dv represents
the Averaged Moreau-Broto Autocorrelation of lag 4
weighted by valence electrons. It captures specific spatial
arrangements and electron distributions within the
molecule. On the other hand, the descriptor C4SP3
exhibited the lowest importance score of 15, suggesting
that it has relatively less influence on the model's
predictions compared to other molecular descriptors.
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Figure 2. Feature importance of the LightGBM model.

C4SP3 refers to a carbon atom bound to four other
carbon atoms with a tetrahedral (SP3) geometry.

3.3. Limitation of This Study

While this study provides valuable insights into the
application of GA and LightGBM in the search for AChE
inhibitors for Alzheimer's disease, it is important to
acknowledge certain limitations. The generalizability of
the LightGBM model's performance is dependent on the
dataset used, which may not fully represent the diversity
of AChE inhibitors. Additionally, the study lacks
experimental validation of the predicted inhibitory
activity, necessitating further experimental studies for
confirmation and assessment of actual potency and
efficacy. These limitations emphasize the need for future
research to address these challenges and broaden our
understanding of effective AChE inhibitors for
Alzheimer's disease.

4. Conclusions

This study demonstrates the effectiveness of combining
GA and LightGBM in the search for AChE inhibitors for
Alzheimer's disease. By using GA for feature selection,
the study identifies the most relevant molecular
descriptors to predict AChE inhibitory activity. The
LightGBM model trained on these selected descriptors
achieves high performance. However, there is a
possibility of overfitting, as the model's performance on
the testing data is slightly lower than that on the training
data. For future studies, it is recommended to fine-tune
hyperparameters and enhance regularization techniques
to achieve a more balanced trade-off between model
complexity and generalization. This approach can help

mitigate overfitting issues and improve the model's
ability to perform well on unseen data. Overall, the
findings highlight the potential of these methods for drug
discovery efforts for Alzheimer's disease.
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