A Deep Dive into Indonesia's CO2 Emissions: The Role of Energy Consumption, Economic Growth and Natural Disasters

Authors

  • Ghalieb Mutig Idroes Energy and Green Economics Unit, Graha Primera Saintifika, Aceh Besar 23371, Indonesia
  • Irsan Hardi Economic Modeling and Data Analytics Unit, Graha Primera Saintifika, Aceh Besar 23371, Indonesia
  • Teuku Rizky Noviandy Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Novi Reandy Sasmita Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111
  • Iin Shabrina Hilal Department of Civil Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Fitranto Kusumo Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo 2007 NSW Australia
  • Rinaldi Idroes Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/eje.v1i2.115

Keywords:

Climate change, CO2 emissions, Economic growth, Non-renewable energy consumption, Renewable energy consumption, Natural disasters, ARDL

Abstract

This study examines the influence of non-renewable energy consumption, renewable energy consumption, economic growth, and natural disasters on Indonesia's carbon dioxide (CO2) emissions spanning from 1980 to 2021. The Autoregressive Distributed Lag (ARDL) model is employed, with supplementary robustness checks utilizing Fully Modified Ordinary Least Squares (FMOLS), Dynamic Ordinary Least Squares (DOLS), and Canonical Cointegration Regression (CCR). The findings reveal that economic growth, along with non-renewable and renewable energy consumption, significantly affects CO2 emissions in both the short and long term. Robustness checks confirm the positive impact of non-renewable energy consumption and economic growth, while renewable energy consumption has a negative effect on CO2 emissions. Moreover, natural disasters exhibit a positive short-term impact on CO2 emissions. Pairwise Granger causality results further underscore the intricate relationships between the variables. To mitigate climate change and curb CO2 emissions in Indonesia, the study recommends implementing policies that foster sustainable economic development, encourage the adoption of renewable energy, and enhance disaster resilience.

Downloads

Download data is not yet available.

References

  1. Box-Steffensmeier, J. M., Burgess, J., Corbetta, M., Crawford, K., Duflo, E., Fogarty, L., Gopnik, A., Hanafi, S., Herrero, M., Hong, Y., Kameyama, Y., Lee, T. M. C., Leung, G. M., Nagin, D. S., Nobre, A. C., Nordentoft, M., Okbay, A., Perfors, A., Rival, L. M., Sugimoto, C. R., Tungodden, B., and Wagner, C. (2022). The future of human behaviour research, Nature Human Behaviour, Vol. 6, No. 1, 15–24. doi:10.1038/s41562-021-01275-6.
  2. Fetisov, V., Gonopolsky, A. M., Davardoost, H., Ghanbari, A. R., and Mohammadi, A. H. (2023). Regulation and impact of VOC and CO 2 emissions on low‐carbon energy systems resilient to climate change: A case study on an environmental issue in the oil and gas industry, Energy Science & Engineering, Vol. 11, No. 4, 1516–1535. doi:10.1002/ese3.1383.
  3. Acaroğlu, H., and Güllü, M. (2022). Climate change caused by renewable and non-renewable energy consumption and economic growth: A time series ARDL analysis for Turkey, Renewable Energy, Vol. 193, 434–447. doi:10.1016/j.renene.2022.04.138.
  4. Hao, Y. (2022). Effect of Economic Indicators, Renewable Energy Consumption and Human Development on Climate Change: An Empirical Analysis Based on Panel Data of Selected Countries, Frontiers in Energy Research, Vol. 10. doi:10.3389/fenrg.2022.841497.
  5. Wu, Y., Zhu, Q., and Zhu, B. (2018). Decoupling analysis of world economic growth and CO2 emissions: A study comparing developed and developing countries, Journal of Cleaner Production, Vol. 190, 94–103. doi:10.1016/j.jclepro.2018.04.139.
  6. Ozdemir, A. C. (2023). Decomposition and decoupling analysis of carbon dioxide emissions in electricity generation by primary fossil fuels in Turkey, Energy, Vol. 273, 127264. doi:10.1016/j.energy.2023.127264.
  7. Yahya, Y., Saleh, S. M., Majid, M. S. A., and Hafasnuddin, H. (2023). Effects of road infrastructure, energy consumption, and economic growth on CO2 emission in Indonesia, 070014. doi:10.1063/5.0137531.
  8. Massagony, A., and Budiono. (2023). Is the Environmental Kuznets Curve (EKC) hypothesis valid on CO 2 emissions in Indonesia?, International Journal of Environmental Studies, Vol. 80, No. 1, 20–31. doi:10.1080/00207233.2022.2029097.
  9. Zhang, Y., Li, L., Sadiq, M., and Chien, F. (2023). The impact of non-renewable energy production and energy usage on carbon emissions: Evidence from China, Energy & Environment, 0958305X2211504. doi:10.1177/0958305X221150432.
  10. Idroes, G. M., Syahnur, S., Majid, M. S. A., Idroes, R., Kusumo, F., and Hardi, I. (2023). Unveiling the Carbon Footprint: Biomass vs. Geothermal Energy in Indonesia, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 10–18. doi:10.60084/eje.v1i1.47.
  11. Idroes, G. M., Syahnur, S., Majid, S. A., Sasmita, N. R., and Idroes, R. (2021). Provincial economic level analysis in Indonesia based on the geothermal energy potential and growth regional domestic products using cluster analysis, IOP Conference Series: Materials Science and Engineering, Vol. 1087, No. 1, 012079. doi:10.1088/1757-899X/1087/1/012079.
  12. Bahri, R. A., Noviandy, T. R., Suhendra, R., Idroes, G. M., Yanis, M., Yandri, E., Nizamuddin, N., and Irvanizam, I. (2023). Utilization of Drone with Thermal Camera in Mapping Digital Elevation Model for Ie Seu’um Geothermal Manifestation Exploration Security, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 25–33. doi:10.60084/ljes.v1i1.40.
  13. Cao, M., Xu, Y., Sun, Y., and Cang, D. (2023). Natural Disasters, Economic Growth, and Carbon Emissions: Empirical Analysis of Chinese Data Based on a Nonlinear Auto-Regressive Distributed Lag Model, Sustainability, Vol. 15, No. 21, 15210. doi:10.3390/su152115210.
  14. Aswadi, K., Jamal, A., Syahnur, S., and Nasir, M. (2023). Renewable and Non-renewable Energy Consumption in Indonesia: Does it Matter for Economic Growth?, International Journal of Energy Economics and Policy, Vol. 13, No. 2, 107–116. doi:10.32479/ijeep.13900.
  15. Suproń, B., and Myszczyszyn, J. (2023). Impact of Renewable and Non-Renewable Energy Consumption and CO2 Emissions on Economic Growth in the Visegrad Countries, Energies, Vol. 16, No. 20, 7163. doi:10.3390/en16207163.
  16. Amin, A., bte Mohamed Yusoff, N. Y., Yousaf, H., Peng, S., Işık, C., Akbar, M., and Abbas, S. (2023). The influence of renewable and non-renewable energy on carbon emissions in Pakistan: evidence from stochastic impacts by regression on population, affluence, and technology model, Frontiers in Environmental Science, Vol. 11. doi:10.3389/fenvs.2023.1182055.
  17. AlNemer, H. A., Hkiri, B., and Tissaoui, K. (2023). Dynamic impact of renewable and non-renewable energy consumption on CO2 emission and economic growth in Saudi Arabia: Fresh evidence from wavelet coherence analysis, Renewable Energy, Vol. 209, 340–356. doi:10.1016/j.renene.2023.03.084.
  18. Bhat, J. A. (2018). Renewable and non-renewable energy consumption—impact on economic growth and CO2 emissions in five emerging market economies, Environmental Science and Pollution Research, Vol. 25, No. 35, 35515–35530. doi:10.1007/s11356-018-3523-8.
  19. Chen, Y., Zhao, J., Lai, Z., Wang, Z., and Xia, H. (2019). Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China’s CO2 emissions: Evidence from a regional panel analysis, Renewable Energy, Vol. 140, 341–353. doi:10.1016/j.renene.2019.03.058.
  20. Chandra Voumik, L., Ridwan, M., Hasanur Rahman, M., and Raihan, A. (2023). An investigation into the primary causes of carbon dioxide releases in Kenya: Does renewable energy matter to reduce carbon emission?, Renewable Energy Focus, Vol. 47, 100491. doi:10.1016/j.ref.2023.100491.
  21. Kabir, M., Habiba, U., Iqbal, M. Z., Shafiq, M., Farooqi, Z. R., Shah, A., and Khan, W. (2023). Impacts of anthropogenic activities & climate change resulting from increasing concentration of Carbon dioxide on environment in 21 st Century; A Critical Review, IOP Conference Series: Earth and Environmental Science, Vol. 1194, No. 1, 012010. doi:10.1088/1755-1315/1194/1/012010.
  22. Kudapa, V. K. (2023). Carbon-dioxide capture, storage and conversion techniques in different sectors – a case study, International Journal of Coal Preparation and Utilization, Vol. 43, No. 9, 1638–1663. doi:10.1080/19392699.2022.2119559.
  23. Sambodo, M. T., Yuliana, C. I., Hidayat, S., Novandra, R., Handoyo, F. W., Farandy, A. R., Inayah, I., and Yuniarti, P. I. (2022). Breaking barriers to low-carbon development in Indonesia: deployment of renewable energy, Heliyon, Vol. 8, No. 4, e09304. doi:10.1016/j.heliyon.2022.e09304.
  24. Rahman, A., Richards, R., Dargusch, P., and Wadley, D. (2023). Pathways to reduce Indonesia’s dependence on oil and achieve longer-term decarbonization, Renewable Energy, Vol. 202, 1305–1323. doi:10.1016/j.renene.2022.11.051.
  25. Zhou, H., Awosusi, A. A., Dagar, V., Zhu, G., and Abbas, S. (2023). Unleashing the asymmetric effect of natural resources abundance on carbon emissions in regional comprehensive economic partnership: What role do economic globalization and disaggregating energy play?, Resources Policy, Vol. 85, 103914. doi:10.1016/j.resourpol.2023.103914.
  26. Thirunavukkarasu, M., Sawle, Y., and Lala, H. (2023). A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques, Renewable and Sustainable Energy Reviews, Vol. 176, 113192. doi:10.1016/j.rser.2023.113192.
  27. Zheng, J., Du, J., Wang, B., Klemeš, J. J., Liao, Q., and Liang, Y. (2023). A hybrid framework for forecasting power generation of multiple renewable energy sources, Renewable and Sustainable Energy Reviews, Vol. 172, 113046. doi:10.1016/j.rser.2022.113046.
  28. Raihan, A. (2023). An overview of the energy segment of Indonesia: present situation, prospects, and forthcoming advancements in renewable energy technology, Journal of Technology Innovations and Energy, Vol. 2, No. 3, 37–63. doi:10.56556/jtie.v2i3.599.
  29. Paramati, S. R., Ummalla, M., and Apergis, N. (2016). The effect of foreign direct investment and stock market growth on clean energy use across a panel of emerging market economies, Energy Economics, Vol. 56, 29–41. doi:10.1016/j.eneco.2016.02.008.
  30. Menegaki, A. N. (2011). Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis, Energy Economics, Vol. 33, No. 2, 257–263. doi:10.1016/j.eneco.2010.10.004.
  31. Sadorsky, P. (2009). Renewable energy consumption and income in emerging economies, Energy Policy, Vol. 37, No. 10, 4021–4028. doi:10.1016/j.enpol.2009.05.003.
  32. Salim, R. A., and Rafiq, S. (2012). Why do some emerging economies proactively accelerate the adoption of renewable energy?, Energy Economics, Vol. 34, No. 4, 1051–1057. doi:10.1016/j.eneco.2011.08.015.
  33. Koc, S., and Bulus, G. C. (2020). Testing validity of the EKC hypothesis in South Korea: role of renewable energy and trade openness, Environmental Science and Pollution Research, Vol. 27, No. 23, 29043–29054. doi:10.1007/s11356-020-09172-7.
  34. Acheampong, A. O., Adams, S., and Boateng, E. (2019). Do globalization and renewable energy contribute to carbon emissions mitigation in Sub-Saharan Africa?, Science of The Total Environment, Vol. 677, 436–446. doi:10.1016/j.scitotenv.2019.04.353.
  35. Alola, A. A., Bekun, F. V., and Sarkodie, S. A. (2019). Dynamic impact of trade policy, economic growth, fertility rate, renewable and non-renewable energy consumption on ecological footprint in Europe, Science of The Total Environment, Vol. 685, 702–709. doi:10.1016/j.scitotenv.2019.05.139.
  36. Hwang, J.-H., and Yoo, S.-H. (2014). Energy consumption, CO2 emissions, and economic growth: evidence from Indonesia, Quality & Quantity, Vol. 48, No. 1, 63–73. doi:10.1007/s11135-012-9749-5.
  37. Holechek, J. L., Geli, H. M. E., Sawalhah, M. N., and Valdez, R. (2022). A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050?, Sustainability, Vol. 14, No. 8, 4792. doi:10.3390/su14084792.
  38. Yue, X., Peng, M. Y.-P., Anser, M. K., Nassani, A. A., Haffar, M., and Zaman, K. (2022). The role of carbon taxes, clean fuels, and renewable energy in promoting sustainable development: How green is nuclear energy?, Renewable Energy, Vol. 193, 167–178. doi:10.1016/j.renene.2022.05.017.
  39. Bakhsh, K., Rose, S., Ali, M. F., Ahmad, N., and Shahbaz, M. (2017). Economic growth, CO 2 emissions, renewable waste and FDI relation in Pakistan: New evidences from 3SLS, Journal of Environmental Management, Vol. 196, 627–632. doi:10.1016/j.jenvman.2017.03.029.
  40. Liu, X., and Bae, J. (2018). Urbanization and industrialization impact of CO2 emissions in China, Journal of Cleaner Production, Vol. 172, 178–186. doi:10.1016/j.jclepro.2017.10.156.
  41. Akbota, A., and Baek, J. (2018). The Environmental Consequences of Growth: Empirical Evidence from the Republic of Kazakhstan, Economies, Vol. 6, No. 1, 19. doi:10.3390/economies6010019.
  42. Ahmed, Z., Wang, Z., and Ali, S. (2019). Investigating the non-linear relationship between urbanization and CO2 emissions: An empirical analysis, Air Quality, Atmosphere & Health, Vol. 12, No. 8, 945–953. doi:10.1007/s11869-019-00711-x.
  43. Kirikkaleli, D., and Kalmaz, D. B. (2020). Testing the moderating role of urbanization on the environmental Kuznets curve: empirical evidence from an emerging market, Environmental Science and Pollution Research, Vol. 27, No. 30, 38169–38180. doi:10.1007/s11356-020-09870-2.
  44. Odugbesan, J. A., and Adebayo, T. S. (2020). The symmetrical and asymmetrical effects of foreign direct investment and financial development on carbon emission: evidence from Nigeria, SN Applied Sciences, Vol. 2, No. 12, 1982. doi:10.1007/s42452-020-03817-5.
  45. Nondo, C., and Kahsai, M. S. (2020). The impact of energy intensity, urbanisation, industrialisation, and income on CO2 emissions in South Africa: an ARDL bounds testing approach, African J. of Economic and Sustainable Development, Vol. 7, No. 4, 307. doi:10.1504/AJESD.2020.106826.
  46. Adebayo, T. S., and Beton Kalmaz, D. (2021). Determinants of CO2 emissions: empirical evidence from Egypt, Environmental and Ecological Statistics, Vol. 28, No. 2, 239–262. doi:10.1007/s10651-020-00482-0.
  47. Chen, X., Rahaman, M. A., Murshed, M., Mahmood, H., and Hossain, M. A. (2023). Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh, Energy, Vol. 267, 126565. doi:10.1016/j.energy.2022.126565.
  48. Sahoo, M., and Sahoo, J. (2022). Effects of renewable and non‐renewable energy consumption on CO2 emissions in India: Empirical evidence from disaggregated data analysis, Journal of Public Affairs, Vol. 22, No. 1. doi:10.1002/pa.2307.
  49. Idroes, G. M., Hardi, I., Nasir, M., Gunawan, E., Maulidar, P., and Maulana, A. R. R. (2023). Natural Disasters and Economic Growth in Indonesia, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 33–39. doi:10.60084/eje.v1i1.55.
  50. Wahid, A. N. M., Hossain, A., Mahmud, K. T., and Alom, K. (2017). CO2 emission, power consumption and economic growth in Bangladesh: an ARDL bound testing approach, The Empirical Economics Letters, Vol. 16, No. 5, 365–372.
  51. Sukumaran, K. (2022). Impact of Human Activities Inducing and Triggering of Natural Disasters, 17–31. doi:10.1007/978-981-16-7397-9_2.
  52. Waheed, A., Fischer, T. B., Kousar, S., and Khan, M. I. (2023). Disaster management and environmental policy integration in Pakistan — an evaluation with particular reference to the China–Pakistan Economic Corridor Plan, Environmental Science and Pollution Research, Vol. 30, No. 48, 105700–105731. doi:10.1007/s11356-023-29310-1.
  53. Bui, A. T., Dungey, M., Nguyen, C. V., and Pham, T. P. (2014). The impact of natural disasters on household income, expenditure, poverty and inequality: evidence from Vietnam, Applied Economics, Vol. 46, No. 15, 1751–1766. doi:10.1080/00036846.2014.884706.
  54. Cassar, A., Healy, A., and von Kessler, C. (2017). Trust, Risk, and Time Preferences After a Natural Disaster: Experimental Evidence from Thailand, World Development, Vol. 94, 90–105. doi:10.1016/j.worlddev.2016.12.042.
  55. Acheampong, A. O. (2018). Economic growth, CO2 emissions and energy consumption: What causes what and where?, Energy Economics, Vol. 74, 677–692. doi:10.1016/j.eneco.2018.07.022.
  56. Begum, R. A., Sohag, K., Abdullah, S. M. S., and Jaafar, M. (2015). CO2 emissions, energy consumption, economic and population growth in Malaysia, Renewable and Sustainable Energy Reviews, Vol. 41, 594–601. doi:10.1016/j.rser.2014.07.205.
  57. Dou, Y., Shahbaz, M., Dong, K., and Dong, X. (2022). How natural disasters affect carbon emissions: the global case, Natural Hazards, Vol. 113, No. 3, 1875–1901. doi:10.1007/s11069-022-05374-z.
  58. Ogbeide-Osaretin, E. N. (2021). Analysing energy consumption and poverty reduction nexus in Nigeria, International Journal of Sustainable Energy, Vol. 40, No. 5, 477–493. doi:10.1080/14786451.2020.1815744.
  59. DOU, Y., DONG, K., JIANG, Q., and SHAHBAZ, M. (2023). HOW DO NATURAL DISASTERS AFFECT ENERGY POVERTY? EVIDENCE FROM A GLOBAL PERSPECTIVE, The Singapore Economic Review, Vol. 68, No. 04, 1115–1146. doi:10.1142/S0217590822440039.
  60. Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Adam, M., Rusyana, A., and Sofyan, H. (2023). Deep Learning-Based Bitcoin Price Forecasting Using Neural Prophet, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 19–25. doi:10.60084/eje.v1i1.51.
  61. Hardi, I., Ringga, E. S., Fijay, A. H., Maulana, A. R. R., Hadiyani, R., and Idroes, G. M. (2023). Decomposed Impact of Democracy on Indonesia’s Economic Growth, Ekonomikalia Journal of Economics, Vol. 1, No. 2, 51–60. doi:doi.org/10.60084/eje.v1i2.80.
  62. Noviandy, T. R., Idroes, G. M., Maulana, A., Hardi, I., Ringga, E. S., and Idroes, R. (2023). Credit Card Fraud Detection for Contemporary Financial Management Using XGBoost-Driven Machine Learning and Data Augmentation Techniques, Indatu Journal of Management and Accounting, Vol. 1, No. 1, 29–35. doi:10.60084/ijma.v1i1.78.
  63. Hardi, I., Idroes, G. M., Hardia, N. A. K., Fajri, I., Furqan, N., Noviandy, T. R., and Utami, R. T. (2023). Assessing the Linkage Between Sustainability Reporting and Indonesia’s Firm Value: The Role of Firm Size and Leverage, Indatu Journal of Management and Accounting, Vol. 1, No. 1, 21–28. doi:10.60084/ijma.v1i1.79.
  64. Hardi, I., Saputra, J., Hadiyani, R., Maulana, A. R. R., and Idroes, G. M. (2023). Decrypting the Relationship Between Corruption and Human Development: Evidence from Indonesia, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 1–9. doi:10.60084/eje.v1i1.22.
  65. Hardi, I., Idroes, G. M., Utami, R. T., Dahlia, P., Mirza, M. A. F., Humam, R. A., Chairunnisa, R., Hardia, N. A. K., and Mahdani, R. (2023). Dynamic Impact of Inflation and Exchange Rate in Indonesia’s Top 10 Market Capitalization Companies: Implications for Stock Prices, Indatu Journal of Management and Accounting, Vol. 1, No. 2, 51–59.
  66. Sasmita, N. R., Phonna, R. A., Fikri, M. K., Khairul, M., Apriliansyah, F., Idroes, G. M., Puspitasari, A., and Saputra, F. E. (2023). Statistical Assessment of Human Development Index Variations and Their Correlates: A Case Study of Aceh Province, Indonesia, Grimsa Journal of Business and Economics Studies, Vol. 1, Nos. 1 SE-Articles, 12–24.
  67. Dong, K., Sun, R., Li, H., and Liao, H. (2018). Does natural gas consumption mitigate CO2 emissions: Testing the environmental Kuznets curve hypothesis for 14 Asia-Pacific countries, Renewable and Sustainable Energy Reviews, Vol. 94, 419–429. doi:10.1016/j.rser.2018.06.026.
  68. Mahmood, H. (2022). The effects of natural gas and oil consumption on CO2 emissions in GCC countries: asymmetry analysis, Environmental Science and Pollution Research, Vol. 29, No. 38, 57980–57996. doi:10.1007/s11356-022-19851-2.
  69. Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods, Econometrica, Vol. 37, No. 3, 424. doi:10.2307/1912791.
  70. Dickey, D. A., and Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, Vol. 74, No. 366a, 427–431. doi:10.1080/01621459.1979.10482531.
  71. Phillips, P. C. B., and Perron, P. (1988). Testing for a Unit Root in Time Series Regression, Biometrika, Vol. 75, No. 2, 335. doi:10.2307/2336182.
  72. Ali, M. U., Gong, Z., Ali, M. U., Wu, X., and Yao, C. (2021). Fossil energy consumption, economic development, inward FDI impact on CO2 emissions in Pakistan: Testing EKC hypothesis through ARDL model, International Journal of Finance & Economics, Vol. 26, No. 3, 3210–3221. doi:10.1002/ijfe.1958.
  73. Abdmouleh, Z., Alammari, R. A. M., and Gastli, A. (2015). Review of policies encouraging renewable energy integration & best practices, Renewable and Sustainable Energy Reviews, Vol. 45, 249–262. doi:10.1016/j.rser.2015.01.035.
  74. Sinsel, S. R., Riemke, R. L., and Hoffmann, V. H. (2020). Challenges and solution technologies for the integration of variable renewable energy sources—a review, Renewable Energy, Vol. 145, 2271–2285. doi:10.1016/j.renene.2019.06.147.
  75. Lu, Y., and Xu, J. (2016). Low‐carbon Reconstruction: A Meta‐Synthesis Approach for the Sustainable Development of a Post‐Disaster Community, Systems Research and Behavioral Science, Vol. 33, No. 1, 173–187. doi:10.1002/sres.2302.
  76. Mitić, P., Fedajev, A., Radulescu, M., and Rehman, A. (2022). The relationship between CO2 emissions, economic growth, available energy, and employment in SEE countries, Environmental Science and Pollution Research, Vol. 30, No. 6, 16140–16155. doi:10.1007/s11356-022-23356-3.
  77. Mensah, I. A., Sun, M., Gao, C., Omari-Sasu, A. Y., Zhu, D., Ampimah, B. C., and Quarcoo, A. (2019). Analysis on the nexus of economic growth, fossil fuel energy consumption, CO2 emissions and oil price in Africa based on a PMG panel ARDL approach, Journal of Cleaner Production, Vol. 228, 161–174. doi:10.1016/j.jclepro.2019.04.281.
  78. Khan, Panigrahi, Almuniri, Soomro, Mirjat, and Alqaydi. (2019). Investigating the Dynamic Impact of CO2 Emissions and Economic Growth on Renewable Energy Production: Evidence from FMOLS and DOLS Tests, Processes, Vol. 7, No. 8, 496. doi:10.3390/pr7080496.
  79. Radmehr, R., Henneberry, S. R., and Shayanmehr, S. (2021). Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries, Structural Change and Economic Dynamics, Vol. 57, 13–27. doi:10.1016/j.strueco.2021.01.006.
  80. Ummalla, M., and Samal, A. (2019). The impact of natural gas and renewable energy consumption on CO2 emissions and economic growth in two major emerging market economies, Environmental Science and Pollution Research, Vol. 26, No. 20, 20893–20907. doi:10.1007/s11356-019-05388-4.
  81. Adedoyin, F. F., Bekun, F. V., and Alola, A. A. (2020). Growth impact of transition from non-renewable to renewable energy in the EU: The role of research and development expenditure, Renewable Energy, Vol. 159, 1139–1145. doi:10.1016/j.renene.2020.06.015.
  82. Doytch, N., and Klein, Y. L. (2018). The impact of natural disasters on energy consumption: An analysis of renewable and nonrenewable energy demand in the residential and industrial sectors, Environmental Progress & Sustainable Energy, Vol. 37, No. 1, 37–45. doi:10.1002/ep.12640.
  83. NADIA BENALI, and KAIS SAIDI. (2017). A ROBUST ANALYSIS OF THE RELATIONSHIP BETWEEN NATURAL DISASTERS, ELECTRICITY AND ECONOMIC GROWTH IN 41 COUNTRIES, Journal of Economic Development, Vol. 42, No. 3, 89–110. doi:10.35866/caujed.2017.42.3.005.
  84. Baig, N., Khan, S., Gilal, N. G., and Qayyum, A. (2018). Do Natural Disasters Cause Economic Growth? An ARDL Bound Testing Approach, Studies in Business and Economics, Vol. 13, No. 1, 5–20. doi:10.2478/sbe-2018-0001.
  85. Benali, N. (2022). The Dynamic Links Between Natural Disaster, Health Spending, and GDP Growth: a Case Study for Lower Middle-Income Countries, Journal of the Knowledge Economy, Vol. 13, No. 3, 1993–2006. doi:10.1007/s13132-021-00793-y.

Downloads

Published

2023-11-20

How to Cite

Idroes, G. M., Hardi, I., Noviandy, T. R., Sasmita, N. R., Hilal, I. S., Kusumo, F. and Idroes, R. (2023) “A Deep Dive into Indonesia’s CO2 Emissions: The Role of Energy Consumption, Economic Growth and Natural Disasters”, Ekonomikalia Journal of Economics, 1(2), pp. 69–81. doi: 10.60084/eje.v1i2.115.