The Importance of Gold’s Effect on Investment and Predicting the World Gold Price Using the ARIMA and ARIMA-GARCH Model

Authors

  • Tanattrin Bunnag Faculty of Science and Social Sciences, Burapha University, 27160, Thailand

DOI:

https://doi.org/10.60084/eje.v2i1.155

Keywords:

Financial market, Forecasting, Gold importance, Market volatility, Time series analysis, ARIMA, ARIMA-GARCH

Abstract

This paper studies the importance of gold's effect on investment and the fact that gold is often seen as a safe-haven asset during economic uncertainty. When inflation rates rise, investors may turn to gold to preserve their wealth; the government will reserve gold to reduce the exchange rate risk. To provide a comprehensive analysis, the study incorporates forecasting the price of gold using both the Autoregressive Integrated Moving Average (ARIMA) and ARIMA-Generalized Autoregressive Conditional Heteroskedasticity (ARIMA-GARCH) models. The gold price data is daily from 1/01/2021 to 3/01/2024. We perform model comparisons that the ARIMA (2,1,3) and the ARIMA (2,1,3)-GARCH (1,1), which model gives lower mean absolute error (MAE) and root mean squared error (RMSE) values. The results show that the MAE and RMSE predictions of the ARIMA (2,1,3)-GARCH (1,1) model are 80.1371 and 96.8299, better than those of the other model. Therefore, the ARIMA (2,1,3)-GARCH (1,1) model forecast results are better precise. It gives a forecast value for gold prices in the world market at the end of 2024 of 1942.094 USD per troy ounce. Hence, the recommendation for investors and policymakers is that if the price is higher than 1942.094 USD per troy ounce in 2024, investors and policymakers should slow down to buy and wait for it to adjust first, or investors and policymakers with gold should gradually sell to make some profit. Moreover, good portfolio management will reduce the exchange rate risk by including an optimized amount of gold in currency portfolios. However, holding gold is risky; its prices may fluctuate due to factors beyond our control, such as war, uncertainty about world economic growth, and inflation. Therefore, investors and policymakers should consider the abovementioned factors and be careful when hedging in gold.

Downloads

Download data is not yet available.

References

  1. Landajo, M., Presno, M. J., and Fernández González, P. (2021). Stationarity in the Prices of Energy Commodities. A Nonparametric Approach, Energies, Vol. 14, No. 11, 3324. doi:10.3390/en14113324.
  2. Abebe, T. H. (2020). Modeling Time-Varying Coffee Price Volatility in Ethiopia, Journal of Applied Economics, Vol. 23, No. 1, 497–518. doi:10.1080/15140326.2020.1804304.
  3. Tkacz, G. (2007). Gold Prices and Inflation. Bank of Canada Working Paper.
  4. Hautcoeur, P.-C. (2010). Jastram, RW: The Golden Constant, Journal of Economics, Vol. 100, No. 2, 189–190. doi:10.1007/s00712-010-0124-5.
  5. Jastram, R. (2009). The Golden Constant: The English and American Experience 1560–2007, The Golden Constant, Edward Elgar Publishing.
  6. Chua, J., and Woodward, R. S. (1982). Gold as an Inflation Hedge: A Comparative Study of Six Major Industrial Countries, Journal of Business Finance & Accounting, Vol. 9, No. 2, 191–197. doi:10.1111/j.1468-5957.1982.tb00985.x.
  7. Baur, D. G., and McDermott, T. K. (2010). Is Gold a Safe Haven? International Evidence, Journal of Banking & Finance, Vol. 34, No. 8, 1886–1898. doi:10.1016/j.jbankfin.2009.12.008.
  8. Narayan, P. K., Narayan, S., and Zheng, X. (2010). Gold and Oil Futures Markets: Are Markets Efficient?, Applied Energy, Vol. 87, No. 10, 3299–3303. doi:10.1016/j.apenergy.2010.03.020.
  9. Narayan, P. K., Narayan, S., and Sharma, S. S. (2013). An Analysis of Commodity Markets: What Gain for Investors?, Journal of Banking & Finance, Vol. 37, No. 10, 3878–3889. doi:10.1016/j.jbankfin.2013.07.009.
  10. Su, C.-W., Liu, Y., Chang, T., and Umar, M. (2022). Can Gold Hedge the Risk of Fear Sentiments?, Technological and Economic Development of Economy, Vol. 29, No. 1, 23–44. doi:10.3846/tede.2022.17302.
  11. Kurniawati, Y., and Muhajir, M. (2022). Optimization of Backpropagation Using Harmony Search for Gold Price Forecasting, Pakistan Journal of Statistics and Operation Research, 589–599. doi:10.18187/pjsor.v18i3.3915.
  12. Markowski, L. (2020). Further Evidence on the Validity of CAPM: The Warsaw Stock Exchange Application, Journal of Economics and Management, Vol. 39, 82–104. doi:10.22367/jem.2020.39.05.
  13. Hardi, I., Ray, S., Attari, M. U. Q., Ali, N., and Idroes, G. M. (2024). Innovation and Economic Growth in the Top Five Southeast Asian Economies: A Decomposition Analysis, Ekonomikalia Journal of Economics, Vol. 2, No. 1, 1–14. doi:10.60084/eje.v2i1.145.
  14. Ke, H., Zuominyang, Z., Qiumei, L., and Yin, L. (2023). Predicting Chinese Commodity Futures Price: An EEMD-Hurst-LSTM Hybrid Approach, IEEE Access, Vol. 11, 14841–14858. doi:10.1109/ACCESS.2023.3239924.
  15. Panagiotou, D. (2021). Revisiting Gold’s Safe Haven Status with the Utilization of the Index of Implied Volatility and Values of Exchange Traded Funds, Applied Finance Letters, Vol. 10, 24–39. doi:10.24135/afl.v10i.412.
  16. Baboshkin, P., and Uandykova, M. (2021). Multi-source Model of Heterogeneous Data Analysis for Oil Price Forecasting, International Journal of Energy Economics and Policy, Vol. 11, No. 2, 384–391. doi:10.32479/ijeep.10853.
  17. Samee, N. A., Atteia, G., Alkanhel, R., Alhussan, A. A., and AlEisa, H. N. (2022). Hybrid Feature Reduction Using PCC-Stacked Autoencoders for Gold/Oil Prices Forecasting under COVID-19 Pandemic, Electronics, Vol. 11, No. 7, 991. doi:10.3390/electronics11070991.
  18. Bidin, J., Syed Abas, S. F., Sharif, N., Che Muhammad Fahimi, C. A. A., and Ku Akil, K. A. (2022). Comparative Study between Holt’s Double Exponential Smoothing and Fuzzy Time Series Markov Chain in Gold Price Forecasting, Journal of Computing Research and Innovation, Vol. 7, No. 2, 283–293. doi:10.24191/jcrinn.v7i2.320.
  19. Antwi, E., Gyamfi, E. N., Kyei, K., Gill, R., and Adam, A. M. (2021). Determinants of Commodity Futures Prices: Decomposition Approach, Mathematical Problems in Engineering, Vol. 2021, 1–24. doi:10.1155/2021/6032325.
  20. Lu, W., Qiu, T., Shi, W., and Sun, X. (2022). International Gold Price Forecast Based on CEEMDAN and Support Vector Regression with Grey Wolf Algorithm, Complexity, Vol. 2022, 1–12. doi:10.1155/2022/1511479.
  21. Li, F., Wang, J., Su, L., and Yang, B. (2017). Dynamic VaR Measurement of Gold Market with SV-T-MN Model, Discrete Dynamics in Nature and Society, Vol. 2017, 1–9. doi:10.1155/2017/5183914.
  22. Sreenu, N., Rao, K. S. S., and D, K. (2021). The Macroeconomic Variables Impact on Commodity Futures Volatility: A Study on Indian Markets, Cogent Business & Management, Vol. 8, No. 1. doi:10.1080/23311975.2021.1939929.
  23. Antwi, E., Gyamfi, E. N., Kyei, K. A., Gill, R., and Adam, A. M. (2022). Modeling and Forecasting Commodity Futures Prices: Decomposition Approach, IEEE Access, Vol. 10, 27484–27503. doi:10.1109/ACCESS.2022.3152694.
  24. Asai, M., Gupta, R., and McAleer, M. (2019). The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures, Energies, Vol. 12, No. 17, 3379. doi:10.3390/en12173379.
  25. Bunnag, T. (2015). The Precious Metals Volatility Comovements and Spillovers, Hedging Strategies in COMEX Market, Journal of Applied Economic Sciences (JAES), Vol. 10, No. 31, 82–103.
  26. Bunnag, T. (2016). Volatility Transmission in Crude Oil, Gold, Standard and Poor’s 500 and US Dollar Index Futures Using VAR-MGARCH, International Journal of Energy Economics and Policy, Vol. 6, No. 1, 39–52.
  27. Plakandaras, V., Gogas, P., and Papadimitriou, T. (2018). The Effects of Geopolitical Uncertainty in Forecasting Financial Markets: A Machine Learning Approach, Algorithms, Vol. 12, No. 1, 1. doi:10.3390/a12010001.
  28. Zhang, J., and Lei, Y. (2022). Deep Reinforcement Learning for Stock Prediction, Scientific Programming, Vol. 2022, 1–9. doi:10.1155/2022/5812546.
  29. Bunnag, T. (2023). Guidelines for Econometrics and Application. Emphasis in Tourism and Financial Economics, RITHA. doi:10.57017/SERITHA.2023.GEA.
  30. Tri, H. T., and Nga, V. T. (2019). Factors Affecting the Disparity of Vietnamese Gold Prices and Worldwide Gold Prices, Journal of Competitiveness, Vol. 11, No. 3, 160–172. doi:10.7441/joc.2019.03.10.
  31. Szczygielski, J. J., Enslin, Z., and Du Toit, E. (2018). An Investigation into the Changing Relationship between the Gold Price and South African Gold Mining Industry Returns, South African Journal of Business Management, Vol. 49, No. 1. doi:10.4102/sajbm.v49i1.232.
  32. Khamis, A. Bin, and Yee, P. H. (2018). A Hybrid Model of Artificial Neural Network and Genetic Algorithm in Forecasting Gold Price, European Journal of Engineering Research and Science, Vol. 3, No. 6, 10. doi:10.24018/ejers.2018.3.6.758.
  33. Yuan, F.-C., Lee, C.-H., and Chiu, C. (2020). Using Market Sentiment Analysis and Genetic Algorithm-Based Least Squares Support Vector Regression to Predict Gold Prices, International Journal of Computational Intelligence Systems, Vol. 13, No. 1, 234. doi:10.2991/ijcis.d.200214.002.
  34. Yaziz, S. R., Azizan, N. A., Zakaria, R., and Ahmad, M. H. (2013). The Performance of Hybrid ARIMA-GARCH Modeling in Forecasting Gold Price, 20th International Congress on Modelling and Simulation, Adelaide, Citeseer, 1–6.
  35. Christina, C., and Umbara, R. F. (2015). Gold Price Prediction Using Type-2 Neuro-Fuzzy Modeling and ARIMA, 2015 3rd International Conference on Information and Communication Technology (ICoICT), IEEE, 272–277. doi:10.1109/ICoICT.2015.7231435.
  36. Sopipan, N. (2018). Trading Gold Future with ARIMA-GARCH Model, Thai Journal of Mathematics, 227–238.
  37. Alameer, Z., Elaziz, M. A., Ewees, A. A., Ye, H., and Jianhua, Z. (2019). Forecasting Gold Price Fluctuations Using Improved Multilayer Perceptron Neural Network and Whale Optimization Algorithm, Resources Policy, Vol. 61, 250–260. doi:10.1016/j.resourpol.2019.02.014.
  38. Shen, L., Shen, K., Yi, C., and Chen, Y. (2020). Regression and Hidden Markov Models for Gold Price Prediction, 2020 IEEE International Conference on Big Data (Big Data), IEEE, 5451–5456. doi:10.1109/BigData50022.2020.9378468.
  39. Nguyen, V. T., Le, D. T., Huy, P. P., Thao, N. T. H., Chau, D. M., Nho, N. T., Tiep, M. V., Hien, V. T., and Hieu, P. T. (2021). Using Some Machine Learning Methods for Time Series Forecasting regarding Gold Prices, 66–85. doi:10.1007/978-981-16-8062-5_5.
  40. Liu, W. (2021). Gold Price Analysis and Prediction Based on Pearson Correlation Analysis, Proceedings of the 2021 1st International Conference on Control and Intelligent Robotics, ACM, New York, NY, USA, 358–361. doi:10.1145/3473714.3473777.
  41. Yin, Z., Song, Z., and Ziyu, Z. (2022). Research on Investment Strategy Based on ARIMA Model and Boruta Random Forest Algorithm, 2022 International Conference on Data Analytics, Computing and Artificial Intelligence (ICDACAI), IEEE, 292–296. doi:10.1109/ICDACAI57211.2022.00064.
  42. Xiang, Y. (2022). Comprehensive Trading Strategy of Gold and Bitcoin Based on ARIMA-GARCH Model, J. Xia (Ed.), Second International Symposium on Computer Technology and Information Science (ISCTIS 2022), SPIE, 22. doi:10.1117/12.2653485.
  43. Lin, J. (2022). Improved Markowitz Portfolio Investment Model Based on ARIMA Model and BP Neural Network, 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA), IEEE, 504–507. doi:10.1109/ICDSCA56264.2022.9988744.
  44. Nanthiya, D., Gopal, S. B., Balakumar, S., Harisankar, M., and Midhun, S. P. (2023). Gold Price Prediction Using ARIMA Model, 2023 2nd International Conference on Vision Towards Emerging Trends in Communication and Networking Technologies (ViTECoN), IEEE, 1–6. doi:10.1109/ViTECoN58111.2023.10157017.
  45. Mani, A., and Thoppan, J. J. (2023). Comparative Analysis of ARIMA and GARCH Models for Forecasting Spot Gold Prices and Their Volatility: A Time Series Study, 2023 IEEE International Conference on Recent Advances in Systems Science and Engineering (RASSE), IEEE, 1–5. doi:10.1109/RASSE60029.2023.10363475.
  46. Khan, R. (2024). Fluctuation and Forecasting of Gold Prices in Saudi Arabia’s Market, Kybernetes. doi:10.1108/K-09-2023-1725.
  47. Javid, I., Ghazali, R., Syed, I., Zulqarnain, M., and Husaini, N. A. (2022). Study on the Pakistan Stock Market Using a New Stock
  48. Crisis Prediction Method, PLOS ONE, Vol. 17, No. 10, e0275022. doi:10.1371/journal.pone.0275022.
  49. Mahmoodzada, A., Ahadi, S., and Mahmoodzada, A. B. (2020). Comparison Performance of Artificial Neural Networks and Fuzzy Inference Systems in Forecasting Precious Metals Price Case Study: Gold, Silver, Platinum and Palladium, Academic Perspective Procedia, Vol. 3, No. 1, 749–762. doi:10.33793/acperpro.03.01.129.
  50. Rubio, L., and Alba, K. (2022). Forecasting Selected Colombian Shares Using a Hybrid ARIMA-SVR Model, Mathematics, Vol. 10, No. 13, 2181. doi:10.3390/math10132181.
  51. Tripathy, N. (2017). Forecasting Gold Price with Auto Regressive Integrated Moving Average Model, International Journal of Economics and Financial Issues, Vol. 7, Nos. 4 SE-Articles, 324–329.
  52. Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Adam, M., Rusyana, A., and Sofyan, H. (2023). Deep Learning-Based Bitcoin Price Forecasting Using Neural Prophet, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 19–25. doi:10.60084/eje.v1i1.51.
  53. Box, G. E. P., and Jenkins, G. M. (1976). Time Series Analysis. Forecasting and Control, Holden-Day Series in Time Series Analysis.
  54. Eagle, R. F. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation, Econometrica, Vol. 50, No. 4, 987–1007.
  55. Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, Vol. 31, No. 3, 307–327. doi:10.1016/0304-4076(86)90063-1.
  56. Wang, W., and Lu, Y. (2018). Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model, IOP Conference Series: Materials Science and Engineering, Vol. 324, 012049. doi:10.1088/1757-899X/324/1/012049.
  57. Capie, F., Mills, T. C., and Wood, G. (2005). Gold as a Hedge against the Dollar, Journal of International Financial Markets, Institutions and Money, Vol. 15, No. 4, 343–352. doi:10.1016/j.intfin.2004.07.002.
  58. Neely, C. J., and Weller, P. A. (2013). Lessons from the Evolution of Foreign Exchange Trading Strategies, Journal of Banking & Finance, Vol. 37, No. 10, 3783–3798. doi:10.1016/j.jbankfin.2013.05.029.
  59. Hammoudeh, S., Sari, R., and Ewing, B. T. (2009). Relationships among Strategic Commodities and with Financial Variables: A New Look, Contemporary Economic Policy, Vol. 27, No. 2, 251–264. doi:10.1111/j.1465-7287.2008.00126.x.
  60. Sarwar, G. (2017). Examining the Flight-to-Safety with the Implied Volatilities, Finance Research Letters, Vol. 20, 118–124. doi:10.1016/j.frl.2016.09.015.
  61. Ghosh, D., Levin, E. J., Macmillan, P., and Wright, R. E. (2004). Gold as an Inflation Hedge?, Studies in Economics and Finance, Vol. 22, No. 1, 1–25. doi:10.1108/eb043380.
  62. Beckmann, J., and Czudaj, R. (2013). Gold as an Inflation Hedge in a Time-Varying Coefficient Framework, The North American Journal of Economics and Finance, Vol. 24, 208–222. doi:10.1016/j.najef.2012.10.007.
  63. Bampinas, G., and Panagiotidis, T. (2015). Are Gold and Silver a Hedge against Inflation? A Two Century Perspective, International Review of Financial Analysis, Vol. 41, 267–276. doi:10.1016/j.irfa.2015.02.007.
  64. Wang, K.-M., and Lee, Y.-M. (2016). Hedging Exchange Rate Risk in the Gold Market: A Panel Data Analysis, Journal of Multinational Financial Management, Vol. 35, 1–23. doi:10.1016/j.mulfin.2016.02.001.
  65. Dickey, D. A., and Fuller, W. A. (1981). Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root, Econometrica, Vol. 49, No. 4, 1057. doi:10.2307/1912517.
  66. Phillips, P. C. B., and Perron, P. (1988). Testing for a Unit Root in Time Series Regression, Biometrika, Vol. 75, No. 2, 335. doi:10.2307/2336182.
  67. Khashei, M., and Bijari, M. (2010). An Artificial Neural Network (p, d, q) Model for Timeseries Forecasting, Expert Systems with Applications, Vol. 37, No. 1, 479–489. doi:10.1016/j.eswa.2009.05.044.
  68. Lucey, B. M., Sharma, S. S., and Vigne, S. A. (2017). Gold and Inflation(s) – a Time-Varying Relationship, Economic Modelling, Vol. 67, 88–101. doi:10.1016/j.econmod.2016.10.008.
  69. Iqbal, J. (2017). Does Gold Hedge Stock Market, Inflation and Exchange Rate Risks? An Econometric Investigation, International Review of Economics & Finance, Vol. 48, 1–17. doi:10.1016/j.iref.2016.11.005.
  70. Xu, Y., Su, C.-W., and Ortiz, J. (2021). Is Gold a Useful Hedge against Inflation across Multiple Time Horizons?, Empirical Economics, Vol. 60, No. 3, 1175–1189. doi:10.1007/s00181-019-01807-0.
  71. Baur, D. G., and Lucey, B. M. (2010). Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold, Financial Review, Vol. 45, No. 2, 217–229. doi:10.1111/j.1540-6288.2010.00244.x.
  72. Azimli, A. (2024). Is Gold a Safe Haven for the U.S. Dollar during Extreme Conditions?, International Economics, Vol. 177, 100478. doi:10.1016/j.inteco.2024.100478.
  73. Idroes, G. M., Hardi, I., Hilal, I. S., Utami, R. T., Noviandy, T. R., and Idroes, R. (2024). Economic Growth and Environmental Impact: Assessing the Role of Geothermal Energy in Developing and Developed Countries, Innovation and Green Development, Vol. 3, No. 3, 100144. doi:10.1016/j.igd.2024.100144.

Downloads

Published

2024-04-02

How to Cite

Bunnag, T. (2024) “The Importance of Gold’s Effect on Investment and Predicting the World Gold Price Using the ARIMA and ARIMA-GARCH Model”, Ekonomikalia Journal of Economics, 2(1), pp. 38–52. doi: 10.60084/eje.v2i1.155.

Issue

Section

Articles