Optimizing Energy Consumption Prediction Across the IMT-GT Region Through PCA-Based Modeling

Authors

  • Muhammad Farid Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Teuku Muhammad Faiz Nuzullah Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Zatul Aklya Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Syifa Nazila Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Muhammad Zia Ulhaq Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Feby Apriliansyah Department of Regional and Urban Planning, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Novi Reandy Sasmita Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/ijds.v3i1.286

Keywords:

Principal Component Analysis, Random Forest, Energy consumption, Prediction , Multicollinearity

Abstract

This study aims to improve the accuracy of energy consumption prediction in the Indonesia-Malaysia-Thailand Growth Triangle (IMT-GT) region by addressing multicollinearity among independent variables such as energy production (Mtoe), lignite coal production (million tons), crude oil production (million tons), refined oil production (million tons), natural gas production (billion cubic meters), and electricity production (terawatt-hours). By integrating Principal Component Analysis (PCA) with Random Forest (RF), six correlated variables were reduced into two uncorrelated principal components (PC1 and PC2), explaining 80.77% of the data variance. The PCA-RF hybrid model outperformed the standalone Random Forest (RF) model, with an increase in the coefficient of determination (R2) from 0.976 to 0.993. Additionally, it achieved significant reductions in error metrics, with the mean absolute error (MAE) decreasing from 5.811 to 4.169 and the root mean square error (RMSE) dropping from 9.278 to 4.786. These results demonstrate PCA’s effectiveness in isolating dominant drivers such as energy and lignite coal production while improving model stability. The framework provides policymakers with a reliable tool to forecast energy demand and align economic growth with sustainability in fossil fuel-dependent economies.

Downloads

Download data is not yet available.

References

  1. Hardi, I., Ray, S., Attari, M. U. Q., Ali, N., and Idroes, G. M. (2024). Innovation and Economic Growth in the Top Five Southeast Asian Economies: A Decomposition Analysis, Ekonomikalia Journal of Economics, Vol. 2, No. 1, 1–14. doi:10.60084/eje.v2i1.145.
  2. Zhang, M., Zuo, Y., Yu, X., Zhang, A., and Zhou, H. (2022). Experimental Study on Seepage Flow Characteristics of Leaked Molten Salt in Foundation Fillers in Concentrating Solar Power Plants, Asia-Pacific Journal of Chemical Engineering, Vol. 17, No. 5, e2813. doi:10.1002/apj.2813.
  3. Ajaz Ahmed. (2022). Energy Smart Buildings: Potential for Conservation and Efficiency of Energy, The Pakistan Development Review, Vol. 53, No. 4, 371–381. doi:10.30541/v53i4IIpp.371-381.
  4. Sanusi, A., Singagerda, F. S., and Sani, A. Z. (2021). World Oil Price Shocks in Macroeconomic ASEAN +3 Countries: Measurement of Risk Management and Decision-Making a Linear Dynamic Panel Approach, International Journal of Energy Economics and Policy, Vol. 11, No. 4, 75–83. doi:10.32479/ijeep.11249.
  5. Mahdi, M. A., Hosny, K. M., and Elhenawy, I. (2021). Scalable Clustering Algorithms for Big Data: A Review, IEEE Access, Vol. 9, No. 1, 80015–80027. doi:10.1109/ACCESS.2021.3084057.
  6. World Bank Expects Solid Growth but Risky Outlook for South Asia. (2023, March).
  7. ASEAN Centre for Energy (ACE), Kresnawan, Muhammad, R., and Beni, S. (2021). ASEAN Energy in 2022: Outlook Report, ASEAN Centre for Energy, 1–26.
  8. Dawson, B., and Spannagle, M. (2020). Intergovernmental Panel on Climate Change (Ipcc), The Complete Guide to Climate Change. doi:10.4324/9780203888469-41.
  9. Wang, S., Lu, H., Khan, A., Hajati, F., Khushi, M., and Uddin, S. (2022). A Machine Learning Software Tool for Multiclass Classification, Software Impacts, Vol. 13, No. 1, 100383. doi:10.1016/j.simpa.2022.100383.
  10. Olayemi, Olanrewaju, S. (2020). Effects of Multicollinearity and Correlation between the Error Terms on Some Estimators in a System of Regression Equations, Global Journal of Science Frontier Research, Vol. 1, No. 1, 77–94. doi:10.34257/GJSFRFVOL20IS4PG77.
  11. Zubair, M., Iqbal, M. A., Shil, A., Chowdhury, M. J. M., Moni, M. A., and Sarker, I. H. (2024). An Improved K-Means Clustering Algorithm towards an Efficient Data-Driven Modeling, Annals of Data Science, Vol. 11, No. 5, 1525–1544. doi:10.1007/s40745-022-00428-2.
  12. Zhang, S., Wang, H., and Keller, A. A. (2021). Novel Machine Learning-Based Energy Consumption Model of Wastewater Treatment Plants, ACS ES&T Water, Vol. 1, No. 12, 2531–2540. doi:10.1021/acsestwater.1c00283.
  13. Joo, C., Park, H., Lim, J., Cho, H., and Kim, J. (2022). Development of Physical Property Prediction Models for Polypropylene Composites with Optimizing Random Forest Hyperparameters, International Journal of Intelligent Systems, Vol. 37, No. 6, 3625–3653. doi:10.1002/int.22700.
  14. Maulana, A., Idroes, G. M., Kemala, P., Maulydia, N. B., Sasmita, N. R., Tallei, T. E., Sofyan, H., and Rusyana, A. (2023). Leveraging Artificial Intelligence to Predict Student Performance: A Comparative Machine Learning Approach, Journal of Educational Management and Learning, Vol. 1, No. 2, 64–70. doi:10.60084/jeml.v1i2.132.
  15. Rodionova, O., Kucheryavskiy, S., and Pomerantsev, A. (2021). Efficient Tools for Principal Component Analysis of Complex Data— a Tutorial, Chemometrics and Intelligent Laboratory Systems, Vol. 213, No. 1, 104304. doi:10.1016/j.chemolab.2021.104304.
  16. Sun, Z., Fan, H., Yuan, Q., Liu, S., Wang, Y., Li, X., Zhang, Y., and Wang, Y. (2024). Area Control Error Prediction Based on PCA-XGBoost. doi:10.3233/FAIA231317.
  17. Testasecca, T., Lazzaro, M., Sarmas, E., and Stamatopoulos, S. (2023). Recent Advances on Data-Driven Services for Smart Energy Systems Optimization and pro-Active Management, 2023 IEEE International Workshop on Metrology for Living Environment (MetroLivEnv), IEEE, 146–151. doi:10.1109/MetroLivEnv56897.2023.10164056.
  18. Koengkan, M., Fuinhas, J. A., Kazemzadeh, E., Osmani, F., Alavijeh, N. K., Auza, A., and Teixeira, M. (2022). Measuring the Economic Efficiency Performance in Latin American and Caribbean Countries: An Empirical Evidence from Stochastic Production Frontier and Data Envelopment Analysis, International Economics, Vol. 169, 43–54. doi:10.1016/J.INTECO.2021.11.004.
  19. Balgabekova, Z., Alaran, M., and Varol, H. A. (2023). A Data-Centric Approach for Object Recognition in Hemispherical Camera Images, IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society, IEEE, 1–6. doi:10.1109/IECON51785.2023.10311869.
  20. Zhou, J., Xu, L., Zhang, L., Zhang, J., and Zhang, A. (2024). Electrospun Polyvinylidene Fluoride Nanogenerator with Hydrophobic Properties and Enhanced Energy Harvesting for Wearable and Wireless Sensing, ACS Applied Electronic Materials, Vol. 6, No. 3, 2026–2038. doi:10.1021/acsaelm.4c00053.
  21. Awosusi, A. A., Rjoub, H., Ağa, M., and Onyenegecha, I. P. (2024). An Insight into the Asymmetric Effect of Economic Globalization on Renewable Energy in Australia: Evidence from the Nonlinear ARDL Approach and Wavelet Coherence, Energy & Environment, Vol. 35, No. 7, 3600–3624. doi:10.1177/0958305X231171702.
  22. Zhang, H. (2023). Global Energy Demand and Forecasting: A Managerial Economics Perspective, Advances in Economics, Management and Political Sciences, Vol. 19, No. 1, 144–149. doi:10.54254/2754-1169/19/20230130.
  23. ADB. (2022). MT-GT Strategic Framework and Roadmap 2022–2026, Asian Development Bank, 65–96.
  24. ADB. (2021). Implementation Blueprint 2017-2021, Asian Development Bank.
  25. Dong, Y., Li, X., Wu, J., and Liu, Y. (2020). International Competitiveness and Potential for Trade Cooperation on Clean Energy between the USA and China, E3S Web of Conferences, Vol. 194, 02007. doi:10.1051/e3sconf/202019402007.
  26. Ağbulut, Ü., Gürel, A. E., and Biçen, Y. (2021). Prediction of Daily Global Solar Radiation Using Different Machine Learning Algorithms: Evaluation and Comparison, Renewable and Sustainable Energy Reviews, Vol. 135, 110114. doi:10.1016/j.rser.2020.110114.
  27. Attanasi, E. D., and Coburn, T. C. (2023). Random Forest, 1182–1185. doi:10.1007/978-3-030-85040-1_265.
  28. Noviandy, T. R., Idroes, G. M., Mohd Fauzi, F., and Idroes, R. (2024). Application of Ensemble Machine Learning Methods for QSAR Classification of Leukotriene A4 Hydrolase Inhibitors in Drug Discovery, Malacca Pharmaceutics, Vol. 2, No. 2, 68–78. doi:10.60084/mp.v2i2.217.
  29. Garcia-Ramirez, I.-A., Calderon-Mora, A., Mendez-Vazquez, A., Ortega-Cisneros, S., and Reyes-Amezcua, I. (2022). A Novel Framework for Fast Feature Selection Based on Multi-Stage Correlation Measures, Machine Learning and Knowledge Extraction, Vol. 4, No. 1, 131–149. doi:10.3390/make4010007.
  30. Yang, X., Zhang, C., Li, Q., and Cheng, J.-H. (2023). Physicochemical Properties of Plasma-Activated Water and Its Control Effects on the Quality of Strawberries, Molecules, Vol. 28, No. 6, 2677. doi:10.3390/molecules28062677.
  31. Qi, S., Sun, Y., Yin, P., Zhang, H., and Wang, Z. (2021). Mobile Phone Use and Cognitive Impairment among Elderly Chinese: A National Cross-Sectional Survey Study, International Journal of Environmental Research and Public Health, Vol. 18, No. 11, 5695. doi:10.3390/ijerph18115695.
  32. Sahriman, S., and Yulianti, A. S. (2023). Statistical Downscaling Model With Principal Component Regression and Latent Root Regression To Forecast Rainfall in Pangkep Regency, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 17, No. 1, 0401–0410. doi:10.30598/barekengvol17iss1pp0401-0410.
  33. Ulhaq, M. Z., Farid, M., Aziza, Z. I., Nuzullah, T. M. F., Syakir, F., and Sasmita, N. R. (2024). Forecasting Upwelling Phenomena in Lake Laut Tawar: A Semi-Supervised Learning Approach, Infolitika Journal of Data Science, Vol. 2, No. 2, 53–61. doi:10.60084/ijds.v2i2.211.
  34. Bintoro, P., Zulkifli, Z., Fitriana, F., and Sukarni, S. (2024). Deep Convolutional Neural Network for Lampung Character Recognition, Bulletin of Electrical Engineering and Informatics, Vol. 13, No. 4, 2471–2484. doi:10.11591/eei.v13i4.6734.
  35. Hahs-Vaughn, D. L. (2021). Multivariate Statistics, Applied Multivariate Statistical Concepts. doi:10.4324/9781315816685-6.
  36. Zhang, H., Jiang, B., Zhang, H., Li, P., Wu, M., Hao, J., and Hu, Y. (2024). Water–Rock Interaction Mechanisms and Hydrochemical Evolution in the Underground Reservoirs of Coal Mines, ACS Omega, Vol. 9, No. 43, 43834–43849. doi:10.1021/acsomega.4c06809.

Downloads

Published

2025-05-28

How to Cite

Farid, M., Nuzullah, T. M. F., Aklya, Z., Nazila, S., Ulhaq , M. Z., Apriliansyah, F. ., & Sasmita, N. R. (2025). Optimizing Energy Consumption Prediction Across the IMT-GT Region Through PCA-Based Modeling. Infolitika Journal of Data Science, 3(1), 31–39. https://doi.org/10.60084/ijds.v3i1.286

Issue

Section

Articles