ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography

Authors

  • Rinaldi Idroes Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Teuku Rizky Noviandy Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Aga Maulana Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Rivansyah Suhendra Department of Information Technology, Faculty of Engineering, Universitas Teuku Umar, Aceh
  • Novi Reandy Sasmita Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Muslem Muslem Department of Chemistry, Faculty of Science and Technology, Universitas Islam Negeri Ar-Raniry, Banda Aceh 23111, Indonesia
  • Ghazi Mauer Idroes Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Raudhatul Jannah Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Razief Perucha Fauzie Afidh Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Irvanizam Irvanizam Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/ijds.v1i1.73

Keywords:

ANFIS, Essential oils, Molecular descriptors

Abstract

This study aims to evaluate the implementation and effectiveness of the Adaptive Neuro-Fuzzy Inference System (ANFIS) based Quantitative Structure Retention Relationship (QSRR) to predict the Kovats retention index of compounds in gas chromatography. The model was trained using 340 essential oil compounds and their molecular descriptors. The evaluation of the ANFIS models revealed promising results, achieving an R2 of 0.974, an RMSE of 48.12, and an MAPE of 3.3% on the testing set. These findings highlight the ANFIS approach as remarkably accurate in its predictive capacity for determining the Kovats retention index in the context of gas chromatography. This study provides valuable perspectives on the efficiency of retention index prediction through ANFIS-based QSRR methods and the potential practicality in compound analysis and chromatographic optimization.

Downloads

Download data is not yet available.

References

  1. Zenkevich, I. G. (2010). Kovats’ Retention Index System, Encyclopedia of Chromatography, Vol. 2, 1304–1310.
  2. Anjum, A., Liigand, J., Milford, R., Gautam, V., and Wishart, D. S. (2023). Accurate Prediction of Isothermal Gas Chromatographic Kováts Retention Indices, Journal of Chromatography A, 464176.
  3. Korány, K., and Amtmann, M. (2005). A practical, theory-supported approach of linear temperature programmed gas chromatographic retention indices used in the recognition experiments of Hungarian food specialities, called “Hungarics”, Journal of Food Composition and Analysis, Vol. 18, No. 5, 345–357.
  4. Wiedmer, S. K., Lokajova, J., and Riekkola, M. (2010). Marker compounds for the determination of retention factors in EKC, Journal of Separation Science, Vol. 33, No. 3, 394–409.
  5. Idroes, R., Muslem, Mahmudi, Saiful, Idroes, G. M., Suhendra, R., and Irvanizam. (2020). The effect of column and temperature variation on the determination of the dead time in gas chromatographic systems using indirect methods, Heliyon, Vol. 6, No. 2, e03302–e03302. doi:10.1016/j.heliyon.2020.e03302.
  6. Aalizadeh, R., Nikolopoulou, V., and Thomaidis, N. S. (2022). Development of Liquid Chromatographic Retention Index Based on Cocamide Diethanolamine Homologous Series (C (n)-DEA), Analytical Chemistry, Vol. 94, No. 46, 15987–15996.
  7. Idroes, R., Mahmudi, M., Saiful, S., Muslem, M., Idroes, G. M., Rusyana, A., Suhendra, R., and Irvanizam, I. (2021). SPREADSHEET AND ITERATION DEAD TIMES OF 2- ALKANONES HOMOLOGUES SERIES ELUTED BY ACETONITRILE/WATER IN REVERSED PHASE HIGHPERFORMANCE LIQUID CHROMATOGRAPHY, Rasayan Journal of Chemistry, Vol. 14, No. 02, 1041–1048. doi:10.31788/RJC.2021.1426024.
  8. Kumar, A., Kumar, P., and Singh, D. (2022). QSRR modelling for the investigation of gas chromatography retention indices of flavour and fragrance compounds on Carbowax 20 M glass capillary column with the index of ideality of correlation and the consensus modelling, Chemometrics and Intelligent Laboratory Systems, Vol. 224, 104552. doi:10.1016/j.chemolab.2022.104552.
  9. Aćimović, M., Pezo, L., Tešević, V., Čabarkapa, I., and Todosijević, M. (2020). QSRR Model for predicting retention indices of Satureja kitaibelii Wierzb. ex Heuff. essential oil composition, Industrial Crops and Products, Vol. 154, 112752. doi:10.1016/j.indcrop.2020.112752.
  10. Liapikos, T., Zisi, C., Kodra, D., Kademoglou, K., Diamantidou, D., Begou, O., Pappa-Louisi, A., and Theodoridis, G. (2022). Quantitative structure retention relationship (QSRR) modelling for Analytes’ retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance, Journal of Chromatography B, Vol. 1191, 123132. doi:10.1016/j.jchromb.2022.123132.
  11. Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., Sasmita, N. R., Muslem, M., Idroes, G. M., Kemala, P., and Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index, International Review on Modelling and Simulations (IREMOS), Vol. 14, No. 2, 137. doi:10.15866/iremos.v14i2.20460.
  12. Qu, C., Schneider, B. I., Kearsley, A. J., Keyrouz, W., and Allison, T. C. (2021). Predicting Kováts Retention Indices Using Graph Neural Networks, Journal of Chromatography A, Vol. 1646, 462100. doi:10.1016/j.chroma.2021.462100.
  13. Maulana, A., Noviandy, T. R., Idroes, R., Sasmita, N. R., Suhendra, R., and Irvanizam, I. (2020). Prediction of Kovats Retention Indices for Fragrance and Flavor using Artificial Neural Network, 2020 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 1–5. doi:10.1109/ICELTICs50595.2020.9315391.
  14. Zhang, J., Zheng, C. H., Xia, Y., Wang, B., and Chen, P. (2017). Optimization enhanced genetic algorithm-support vector regression for the prediction of compound retention indices in gas chromatography, Neurocomputing, Vol. 240, 183–190. doi:10.1016/j.neucom.2016.11.070.
  15. Noviandy, T. R., Maulana, A., Sasmita, N. R., Suhendra, R., Irvanizam, I., Muslem, M., Idroes, G. M., Yusuf, M., Sofyan, H., Abidin, T. F., and Idroes, R. (2022). The Prediction of Kovats Retention Indices of Essential Oils at Gas Chromatography Using Genetic Algorithm-Multiple Linear Regression and Support Vector Regression, Journal of Engineering Science and Technology, Vol. 17, No. 1, 306–326.
  16. Jang, J.-S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, 665–685. doi:10.1109/21.256541.
  17. Hussain, M., Raju, Y. K., and V Kamakshi, P. (2021). Application of Multiple Linear Regression Models and Adaptive Neuro-Fuzzy Inference System Models to estimate the Compressive Strength of Concrete, IOP Conference Series: Materials Science and Engineering, Vol. 1126, No. 1, 012062. doi:10.1088/1757-899X/1126/1/012062.
  18. Senthilraja, S., Gangadevi, R., Köten, H., and Marimuthu, R. (2020). Performance assessment of a solar powered hydrogen production system and its ANFIS model, Heliyon, Vol. 6, No. 10, e05271. doi:10.1016/j.heliyon.2020.e05271.
  19. Yilmaz, I., and Kaynar, O. (2011). Multiple regression, ANN (RBF, MLP) and ANFIS models for prediction of swell potential of clayey soils, Expert Systems with Applications, Vol. 38, No. 5, 5958–5966. doi:10.1016/j.eswa.2010.11.027.
  20. Elaziz, M. A., Moemen, Y. S., Hassanien, A. E., and Xiong, S. (2018). Quantitative Structure-Activity Relationship Model for HCVNS5B inhibitors based on an Antlion Optimizer-Adaptive Neuro-Fuzzy Inference System, Scientific Reports, Vol. 8, No. 1, 1506. doi:10.1038/s41598-017-19122-y.
  21. Al-Hmouz, A., Jun Shen, Al-Hmouz, R., and Jun Yan. (2012). Modeling and Simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for Mobile Learning, IEEE Transactions on Learning Technologies, Vol. 5, No. 3, 226–237. doi:10.1109/TLT.2011.36.
  22. Şahin, M., and Erol, R. (2017). A Comparative Study of Neural Networks and ANFIS for Forecasting Attendance Rate of Soccer Games, Mathematical and Computational Applications, Vol. 22, No. 4, 43. doi:10.3390/mca22040043.
  23. Babushok, V. I. (2015). Chromatographic retention indices in identification of chemical compounds, TrAC - Trends in Analytical Chemistry, Vol. 69, 98–104. doi:10.1016/j.trac.2015.04.001.
  24. Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12.
  25. Todeschini, R., and Consonni, V. (2009). Molecular Descriptors for Chemoinformatics. Vol. 1. Alphabetical Listing; Vol. 2. Appendices, References.
  26. Maulydia, N. B., Khairan, K., and Noviandy, T. R. (2023). Prediction of Pharmacokinetic Parameters from Ethanolic Extract Mane Leaves (Vitex pinnata L.) in Geothermal Manifestation of Seulawah Agam Ie-Seu’um, Aceh, Malacca Pharmaceutics, Vol. 1, No. 1, 16–21. doi:10.60084/mp.v1i1.33.
  27. Noviandy, T. R., Maulana, A., Idroes, G. M., Maulydia, N. B., Patwekar, M., Suhendra, R., and Idroes, R. (2023). Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’s Disease Drug Discovery, Malacca Pharmaceutics, Vol. 1, No. 2, 48–54. doi:10.60084/mp.v1i2.60.
  28. Joseph, V. R. (2022). Optimal ratio for data splitting, Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 15, No. 4, 531–538. doi:10.1002/sam.11583.
  29. Agustia, M., Noviandy, T. R., Maulana, A., Suhendra, R., Muslem, M., Sasmita, N. R., Idroes, G. M., Rahimah, S., Afidh, R. P. F., Subianto, M., Irvanizam, I., and Idroes, R. (2022). Application of Fuzzy Support Vector Regression to Predict the Kovats Retention Indices of Flavors and Fragrances, 2022 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 13–18. doi:10.1109/ICELTICs56128.2022.9932124.
  30. Palconit, M. G. B., Conception II, R. S., Alejandrino, J. D., Nunez, W. A., Bandala, A. A., and Dadios, E. P. (2021). Comparative ANFIS Models for Stochastic On-road Vehicle CO 2 Emission using Grid Partitioning, Subtractive, and Fuzzy C-means Clustering, 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC), IEEE, 1–6. doi:10.1109/R10-HTC53172.2021.9641644.
  31. Alexander, D. L. J., Tropsha, A., and Winkler, D. A. (2015). Beware of R 2 : Simple, Unambiguous Assessment of the Prediction Accuracy of QSAR and QSPR Models, Journal of Chemical Information and Modeling, Vol. 55, No. 7, 1316–1322. doi:10.1021/acs.jcim.5b00206.
  32. Moreno, J. J. M., Palmer Pol, A., Sesé Abad, A., and Cajal Blasco, B. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy., Psicothema, Vol. 25, No. 4, 500–6. doi:10.7334/psicothema2013.23.

Downloads

Published

2023-09-07

How to Cite

Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., Sasmita, N. R., Muslem, M., Idroes, G. M., Jannah, R., Afidh, R. P. F., & Irvanizam, I. (2023). ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography. Infolitika Journal of Data Science, 1(1), 8–14. https://doi.org/10.60084/ijds.v1i1.73