Leading Light: The Impact of Advanced Lighting Technologies on Indonesia's Office Industry

Authors

  • Novan Murdiyansyah Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erkata Yandri Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Dewi Putriani Yogosara Lodewijk Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Die Grone-Bildungszentren Hamburg Heinrich-Grone-Stieg 1-4, Hamburg 20097, Germany
  • Ratna Ariati Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia

DOI:

https://doi.org/10.60084/ljes.v2i1.140

Keywords:

Lighting innovations, Efficiency in energy use, LED lights, Industrial revolution 4.0, Green office industry

Abstract

Addressing concerns over resource scarcity and environmental sustainability necessitates a global shift towards sustainable energy, notably facilitated by adopting Light-Emitting Diode (LED) lamps. This transition is pivotal for ensuring global energy security and aligning with sustainability goals. This study endeavors to comprehensively analyze potential energy savings achievable through the transition from Fluorescent (FL) lamps to LED lamps within industrial offices. Emphasis is placed on highlighting the central role of energy efficiency. Utilizing false color rendering as a visual guide, the study systematically identifies areas where FL lamps inadequately illuminate. The findings prompt recalculations for determining optimal room illumination achievable through implementing LED lamps. Lux calculations are then employed to showcase the superior illumination offered by LED lamps, revealing consistent monthly cost savings of 35%, particularly when harmonized with Building Management System (BMS) control in industrial office buildings. The study's results indicate that LED lamps provide superior illumination, yielding a noteworthy 35% monthly cost savings, especially when integrated with BMS control. Lamps contribute modestly (21-30%) to overall energy consumption, while air conditioning commands a substantial 60%, underscoring the critical need for advanced lighting technology. This need is emphasized, particularly with Solar PV as a sustainable energy source. Understanding technological developments, especially in BMS, is crucial to optimize energy efficiency in industrial offices. The imperative implementation of LED lighting technology is a critical solution to address resource scarcity and environmental concerns in industrial offices. The efficacy of LED lamps in achieving significant energy savings, especially when coupled with advanced systems like BMS and complemented by renewable energy sources such as Solar PV. The conclusion stresses the significance of staying abreast of technological advancements to foster sustained progress towards energy-efficient and environmentally conscious practices within industrial environments.

Downloads

Download data is not yet available.

References

  1. Moey, L. K., Goh, K. S., Tong, D. L., Chong, P. L., Adam, N. M., and Ahmad, K. A. (2020). A Review on Current Energy Usage and Potential of Sustainable Energy in Southeast Asia Countries, Journal of Sustainability Science and Management, Vol. 15, No. 2, 89–107.
  2. Najjar, M., Figueiredo, K., Hammad, A. W. A., and Haddad, A. (2019). Integrated Optimization with Building Information Modeling and Life Cycle Assessment for Generating Energy Efficient Buildings, Applied Energy, Vol. 250, No. January, 1366–1382. doi:10.1016/j.apenergy.2019.05.101.
  3. Idroes, G. M., Hardi, I., Noviandy, T. R., Sasmita, N. R., Hilal, I. S., Kusumo, F., and Idroes, R. (2023). A Deep Dive into Indonesia’s CO2 Emissions: The Role of Energy Consumption, Economic Growth and Natural Disasters, Ekonomikalia Journal of Economics, Vol. 1, No. 2, 69–81. doi:10.60084/eje.v1i2.115.
  4. Wagiman, K. R., Abdullah, M. N., Hassan, M. Y., Mohammad Radzi, N. H., Abu Bakar, A. H., and Kwang, T. C. (2020). Lighting System Control Techniques in Commercial Buildings: Current Trends and Future Directions, Journal of Building Engineering, Vol. 31, No. March, 101342. doi:10.1016/j.jobe.2020.101342.
  5. Byun, J., and Shin, T. (2018). Design and Implementation of an Energy-Saving Lighting Control System Considering User Satisfaction, IEEE Transactions on Consumer Electronics, Vol. 64, No. 1, 61–68. doi:10.1109/TCE.2018.2812061.
  6. Duwal, I. (2019). Case Study for Replacement of Conventional Lights by Led Lights, Journal of Science and Engineering, Vol. 7, No. November, 44–51. doi:10.3126/jsce.v7i0.26789.
  7. Bhattacharya, S., Satvaya, P., and Roy, S. (2024). Predictive Modelling of Lighting Quality Parameters and Energy Efficiency of Light Emitting Diode-Based General Road Illumination Systems with Special Emphasis on Luminaire Tilt and Bracket Length, Sadhana - Academy Proceedings in Engineering Sciences, Vol. 49, No. 1. doi:10.1007/s12046-023-02382-y.
  8. Hoang, T. T. L., Do, T. G., Nguyen, V. T., Nguyen, H. C., and Phan, H. K. (2020). Environmental Impacts of Photoluminescence and Light-Emitting Diode (LED) Lighting Technologies in Horticulture: Case Study on Compact Fluorescent Lamp (CFL) and LED Lights for “Night Break” of Chrysanthemum Cultivation, Sustainability, Vol. 12, No. 19, 7969. doi:10.3390/su12197969.
  9. Kadam, A. R., Nair, G. B., and Dhoble, S. J. (2019). Insights into the Extraction of Mercury from Fluorescent Lamps: A Review, Journal of Environmental Chemical Engineering, Vol. 7, No. 4, 103279. doi:10.1016/j.jece.2019.103279.
  10. Zou, H., Zhou, Y., Jiang, H., Chien, S. C., Xie, L., and Spanos, C. J. (2018). WinLight: A WiFi-Based Occupancy-Driven Lighting Control System for Smart Building, Energy and Buildings, Vol. 158, 924–938. doi:10.1016/j.enbuild.2017.09.001.
  11. Manolis, E., Doulos, L. T., Niavis, S., and Canale, L. (2019). The Impact of Energy Efficiency Indicators on the Office Lighting Planning and Its Implications for Office Lighting Market, Proceedings - 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe, EEEIC/I and CPS Europe 2019. doi:10.1109/EEEIC.2019.8783856.
  12. Montoya, F. G., Peña-García, A., Juaidi, A., and Manzano-Agugliaro, F. (2017). Indoor Lighting Techniques: An Overview of Evolution and New Trends for Energy Saving, Energy and Buildings, Vol. 140, 50–60. doi:10.1016/j.enbuild.2017.01.028.
  13. Gnana Swathika, O. V., Karthikeyan, K., Subramaniam, U., Udayanga Hemapala, K. T. M., and Bhaskar, S. M. (2022). Energy Efficient Outdoor Lighting System Design: Case Study of IT Campus, IOP Conference Series: Earth and Environmental Science, Vol. 1026, No. 1. doi:10.1088/1755-1315/1026/1/012029.
  14. Vandenbogaerde, L., Verbeke, S., and Audenaert, A. (2023). Optimizing Building Energy Consumption in Office Buildings: A Review of Building Automation and Control Systems and Factors Influencing Energy Savings, Journal of Building Engineering, Vol. 76. doi:10.1016/j.jobe.2023.107233.
  15. Morgan Pattison, P., Hansen, M., and Tsao, J. Y. (2018). LED Lighting Efficacy: Status and Directions, Comptes Rendus Physique, Vol. 19, No. 3, 134–145. doi:10.1016/j.crhy.2017.10.013.
  16. Beccali, M., Bonomolo, M., Lo Brano, V., Ciulla, G., Di Dio, V., Massaro, F., and Favuzza, S. (2019). Energy Saving and User Satisfaction for a New Advanced Public Lighting System, Energy Conversion and Management, Vol. 195, 943–957. doi:10.1016/j.enconman.2019.05.070.
  17. Hemmerling, M., Seegers, M., and Witzel, D. (2023). Calculation of Energy Saving Potential for Lighting with DIALux Evo, Energy and Buildings, Vol. 278. doi:10.1016/j.enbuild.2022.112475.
  18. Philips. (2022). Lighting TL5 Essential HE, 27–29.
  19. Highbay, G., Cw, B. Y. P. L. E. D., Wb, P. S. U., and Gm, G. (2020). Lighting GreenPerform.
  20. Mandala, A. (2019). Lighting Quality in the Architectural Design Studio (Case Study: Architecture Design Studio at Universitas Katolik Parahyangan, Bandung, Indonesia), IOP Conference Series: Earth and Environmental Science, Vol. 238, No. 1. doi:10.1088/1755-1315/238/1/012032.
  21. Wijaya, D. D. A., Utami, S. S., Adi, G. S., and Prayitno, B. (2019). Optimization of Natural and Artificial Lighting System Design in the Library of the Faculty of Economics and Business, Universitas Gadjah Mada, ICETAS 2019 - 2019 6th IEEE International Conference on Engineering, Technologies and Applied Sciences. doi:10.1109/ICETAS48360.2019.9117347.
  22. Mohd Husini, E., Raja Md Yazit, R. N. S., Arabi, F., Wan Ismail, W. N., and Jaafar, N. H. (2018). Light, Daylighting and Fluctuation of Illuminance Level in Office Buildings, IOP Conference Series: Materials Science and Engineering, Vol. 401, No. 1. doi:10.1088/1757-899X/401/1/012021.
  23. Standar Nasional Indonesia, B. S. N. (2001). SNI 03-6575-2001 Tentang Tata Cara Perancangan Sistem Pencahayaan Buatan pada Bangunan Gedung, SNI 03-6575-2001 Tentang Tata Cara Perancangan Sistem Pencahayaan Buatan Pada Bangunan Gedung, 1–32.
  24. Sardar, S., Ganguly, A., Roy, A., Banerjee, S., and Kumar, S. (2023). Energy-Efficient Railway Lighting Design—A Case Study, Lecture Notes in Electrical Engineering, Vol. 926, 597–605. doi:10.1007/978-981-19-4971-5_43.
  25. Idrus, I. (2019). Evaluasi Kondisi Pencahayaan Integrasi Manual Pada Ruang Kantor Menara Balaikota Makassar, Jurnal Linears, Vol. 1, No. 1, 1–11. doi:10.26618/j-linears.v1i1.1312.
  26. Zhang, L., Yuan, L., Zhang, W., and Guo, P. (2021). General Classroom Lighting Design and Simulation Based on DIALux evo software, 2021 International Conference on Electronic Information Engineering and Computer Science, EIECS 2021, 994–997. doi:10.1109/EIECS53707.2021.9587908.
  27. Hafezparast Moadab, N., Olsson, T., Fischl, G., and Aries, M. (2021). Smart versus Conventional Lighting in Apartments – Electric Lighting Energy Consumption Simulation for Three Different Households, Energy and Buildings, Vol. 244, 111009. doi:10.1016/j.enbuild.2021.111009.
  28. Berawi, M. A., Kim, A. A., Naomi, F., Basten, V., Miraj, P., Medal, L. A., and Sari, M. (2023). Designing a Smart Integrated Workspace to Improve Building Energy Efficiency: An Indonesian Case Study, International Journal of Construction Management, Vol. 23, No. 3, 410–422. doi:10.1080/15623599.2021.1882747.
  29. Soheilian, M., Fischl, G., and Aries, M. (2021). Smart Lighting Application for Energy Saving and User Well-Being in the Residential Environment, Sustainability (Switzerland), Vol. 13, No. 11. doi:10.3390/su13116198.
  30. Yandri, E., Ariati, R., Uyun, A. S., Setyobudi, R. H., Anne, O., Susanto, H., and Vincevica-Gaile, Z. (2020). Implementation of walk-through audits for designing energy management system: A first step towards an efficient campus, IOP Conference Series: Earth and Environmental Science, Vol. 490, No. 1. doi:10.1088/1755-1315/490/1/012005.
  31. Pintér, G., Baranyai, N. H., Wiliams, A., and Zsiborács, H. (2018). Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary, Energies, Vol. 11, No. 4, 1–13. doi:10.3390/en11040790.
  32. Rudationo, C. B., Novianto, B., Yandri, E., Susanto, H., Setyobudi, R. H., Uyun, A. S., Nur, S. M., Wahono, S. K., Widodo, W., Zekker, I., and Lomi, A. (2021). Techno-Economic Analysis of Rooftop Photovoltaic System (RPVS) Using Thin-Frameless Solar Panels for Household Customers in Indonesia, Proceedings of the Pakistan Academy of Sciences: Part A, Vol. 58, No. Special Issue, 131–139. doi:10.53560/PPASA(58-SP1)750.
  33. Yandri, E., Idroes, R., Maulana, A., and Zahriah, Z. (2023). Design Concept of Information Control Systems for Green Manufacturing Industries with IoT-Based Energy Efficiency and Productivity, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 9–17. doi:10.60084/ljes.v1i1.36.
  34. Yandri, E., Idroes, R., Setyobudi, R. H., Rudationo, C. B., Wahono, S. K., Mahaswa, R. K., Burlakovs, J., and Susanto, H. (2021). Reducing Energy and Water Consumption in Textile Dyeing Industry with Cleaner Production by Inlet-Outlet Modification to Reuse Wastewater, Proceedings of the Pakistan Academy of Sciences: Part A, Vol. 58, No. S, 49–58. doi:10.53560/PPASA(58-sp1)732.
  35. Yandri, E., Ariati, R., Saepul Uyun, A., Hendroko Setyobudi, R., Susanto, H., Abdullah, K., Krido Wahono, S., Adhi Nugroho, Y., Yaro, A., and Burlakovs, J. (2020). Potential Energy Efficiency and Solar Energy Applications in a Small Industrial Laundry: A Practical Study of Energy Audit, E3S Web of Conferences, Vol. 190. doi:10.1051/e3sconf/202019000008.
  36. Yandri, E., Suherman, S., Lomi, A., Setyobudi, R. H., Ariati, R., Pramudito, P., Ronald, R., Ardiani, Y., Burlakovs, J., Zahoor, M., Shah, L. A., Fauzi, A., Tonda, R., and Iswahyudi, I. (2024). Sustainable Energy Efficiency in Aluminium Parts Industries Utilizing Waste Heat and Equivalent Volume with Energy Management Control System, Proceedings of the Estonian Academy of Sciences, Vol. 73, No. 1, 29–42. doi:10.3176/proc.2024.1.04.
  37. Yandri, E., Pramudito, P., Ronald, R., Ardiani, Y., Ariati, R., Setyobudi, R. H., Widodo, W., Zahoor, M., Zekker, I., and Lomi, A. (2022). Technical Design of Aluminium Scrap Processing Machines by Utilizing Direct Exhaust Air Using Conveyor Drying System, Proceedings of the Estonian Academy of Sciences, Vol. 71, No. 2, 178–185. doi:10.3176/proc.2022.2.01.

Downloads

Published

2024-03-18

How to Cite

Murdiyansyah, N., Yandri, E., Lodewijk, D. P. Y., & Ariati, R. (2024). Leading Light: The Impact of Advanced Lighting Technologies on Indonesia’s Office Industry. Leuser Journal of Environmental Studies, 2(1), 1–11. https://doi.org/10.60084/ljes.v2i1.140

Issue

Section

Articles