Characterization of Geochemical and Isotopic Profiles in the Southern Zone Geothermal Systems of Mount Seulawah Agam, Aceh Province, Indonesia

Authors

  • Andi Lala Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Muhammad Yusuf Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Department of Pharmacy, STIKES Assyifa Aceh, Aceh 23242, Indonesia
  • Rivansyah Suhendra Department of Information Technology, Faculty of Engineering, Universitas Teuku Umar, Aceh Barat 23681, Indonesia
  • Nur Balqis Maulydia Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Dian Budi Dharma Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Energy and Mineral Resources Agency of Aceh Province, Banda Aceh, Indonesia
  • Saiful Saiful Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Rinaldi Idroes Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/ljes.v2i1.172

Keywords:

Cations, Anions, Isotopes , Mount Seulawah Agam, Geochemical, Geothermometer, Reservoir

Abstract

The Seulawah Agam geothermal area exhibits significant potential as a source of energy for power generation, with an estimated capacity of 130 MW. Geological and geochemical investigations indicate that the Seulawah Agam geothermal system is part of the extensive Sumatra Fault. Analysis of the geochemical composition of geothermal water at the South Zone manifestation location of Mount Seulawah Agam, Aceh Province-Indonesia, involves examining cation (K+, Na+, Ca2+, and Mg2+), anion (Cl-, HCO3-, and SO42-), and isotope (δD and δ18O) contents. This data aids in estimating reservoir temperatures using geothermometer equations. Surface characteristics of the South Zone manifestation reveal neutral to alkaline pH values (6.02 to 8.68), relative temperatures (29.97 to 42.57 ºC), conductivity (49.8 to 100.7 mV), and TDS (Total Dissolved Solids) ranging from 352.6 to 497.0 mg/L. The dominant water composition is sodium–calcium–bicarbonate (Ca–Na–HCO3), indicating a bicarbonate water type. Average temperature depths in the South Zone manifestation of Mount Seulawah Agam are estimated as follows: Alue Ie Seu’um around 288.84 ± 2.19 ºC, Alue Ie Masam around 304.17 ± 20.9 ºC, Alue PU around 290.02 ± 6.85ºC, and Alue Teungku around 265±11.39 ºC. Isotope data (δD and δ18O) suggest meteoric water as the source for this manifestation. Fluid geochemical analysis indicates the potential for utilizing the geothermal manifestations of the South Zone of Mount Seulawah Agam for geothermal development or the construction of a geothermal power plant, given its high enthalpy system with an average temperature exceeding 225 ºC. Further research, including data drilling, is essential to gather precise subsurface data. Additionally, the Aceh Provincial Government should formulate policies to identify strategic areas for geothermal development, leveraging the existing exploitable potential.

Downloads

Download data is not yet available.

References

  1. Hochstein, M. P., and Sudarman, S. (2008). History of Geothermal Exploration in Indonesia from 1970 to 2000, Geothermics, Vol. 37, No. 3, 220–266. doi:10.1016/j.geothermics.2008.01.001.
  2. Soltani, M., Moradi Kashkooli, F., Souri, M., Rafiei, B., Jabarifar, M., Gharali, K., and Nathwani, J. S. (2021). Environmental, Economic, and Social Impacts of Geothermal Energy Systems, Renewable and Sustainable Energy Reviews, Vol. 140, 110750. doi:10.1016/j.rser.2021.110750.
  3. Lund, J. W., and Toth, A. N. (2021). Direct Utilization of Geothermal Energy 2020 Worldwide Review, Geothermics, Vol. 90, 101915. doi:10.1016/j.geothermics.2020.101915.
  4. Xiong, Y., Zhu, M., Li, Y., Huang, K., Chen, Y., and Liao, J. (2022). Recognition of Geothermal Surface Manifestations: A Comparison of Machine Learning and Deep Learning, Energies, Vol. 15, No. 8. doi:10.3390/en15082913.
  5. Aprianto, A., Maulana, A., Noviandy, T. R., Lala, A., Yusuf, M., Marwan, M., Afidh, R. P. F., Irvanizam, I., Nizamuddin, N., and Idroes, G. M. (2023). Exploring Geothermal Manifestations in Ie Jue , Indonesia : Enhancing Safety with Unmanned Aerial Vehicle, Leuser Journal of Environmental Studies, Vol. 1, No. 2, 47–54. doi:10.60084/ljes.v1i2.75.
  6. Maulydia, N. B., Idroes, R., Khairan, K., Tallei, T. E., and Mohd Fauzi, F. (2024). Ecotoxicological Insight of Phytochemicals, Toxicological Informatics, and Heavy Metal Concentration in Tridax procumbens L. in Geothermal Areas, Global Journal of Environmental Science and Management, Vol. 10, No. 1, 369–384. doi:10.22034/gjesm.2024.01.23.
  7. Maulydia, N. B., Khairan, K., Tallei, T. E., Estevam, E. C., Patwekar, M., Mohd Fauzi, F., and Idroes, R. (2023). GC-MS Analysis Reveals Unique Chemical Composition of Blumea balsamifera (L.) DC in Ie-Jue Geothermal Area, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 1, 9–16. doi:10.61975/gjset.v1i1.6.
  8. Darma, S., Imani, Y. L., Naufal, M., Shidqi, A., Riyanto, D., and Yunus Daud, M. (2020). Country Update: The Fast Growth of Geothermal Energy Development in Indonesia, Proceedings World Geothermal Congress 2020+1, No. 12, 8.
  9. Bertani, R. (2016). Geothermal Power Generation in the World 2010–2014 Update Report, Geothermics, Vol. 60, No. October 2021, 31–43. doi:10.1016/j.geothermics.2015.11.003.
  10. Deon, F., Förster, H.-J., Brehme, M., Wiegand, B., Scheytt, T., Moeck, I., Jaya, M. S., and Putriatni, D. J. (2015). Geochemical/Hydrochemical Evaluation of the Geothermal Potential of the Lamongan Volcanic Field (Eastern Java, Indonesia), Geothermal Energy, Vol. 3, No. 1, 20. doi:10.1186/s40517-015-0040-6.
  11. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., and Mahlia, T. M. I. (2019). Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia, Energies, Vol. 12, No. 23, 4442. doi:10.3390/en12234442.
  12. Marwan, Rusydy Ibnu , Nugraha Gartika Setiya, A. (2014). Study of Seulawah Agam’s Geothermal Source Using Gravity Method, Natural, Vol. 14, No. 2, 1–5. doi:10.17969/jn.v14i2.2252.
  13. Putri, D. R., N. Ismail, R. Idroes, M. Marwan, S. Rizal, Abdulmadjid, S. N., Idroes, G. M., Noviandy, T. R., A. Lala, M. Yusuf, M. Muslem, R. Suhendra, M. Yanis, and D. B. Dharma. (2023). Geochemical Investigation of Hot Springs in the Bur Ni Geureudong Geothermal Prospect Area, Aceh-Indonesia, RASAYAN Journal of Chemistry, Vol. 16, No. 03, 1826–1834. doi:10.31788/RJC.2023.1638430.
  14. Wilschefski, S., and Baxter, M. (2019). Inductively Coupled Plasma Mass Spectrometry: Introduction to Analytical Aspects, Clinical Biochemist Reviews, Vol. 40, No. 3, 115–133. doi:10.33176/AACB-19-00024.
  15. Rosydiati. (2019). Karakterisasi Puncak Kromatogram dalam High Performance Liquid Chromatography (HPLC) terhadap Perbedaan Fase Gerak, Laju Alir, dan Penambahan Asam dalam Analisis Indole Acetic Acid (IAA), Kandaga, Vol. 1, No. 2, 65–73.
  16. Nicholson, K. (1993). Geothermal Fluids: Chemistry and Exploration Techniques, Springer Verlag, Vol. 263.
  17. Idroes, R., Yusuf, M., Alatas, M., Subhan, Lala, A., Saiful, Suhendra, R., Idroes, G. M., and Marwan. (2018). Geochemistry of Hot Springs in the Ie Seu’um Hydrothermal Areas at Aceh Besar District, Indonesia, IOP Conference Series: Materials Science and Engineering, Vol. 334, No. 1, 012002. doi:10.1088/1757-899X/334/1/012002.
  18. Idroes, R., Yusuf, M., Alatas, M., Subhan, Lala, A., Muslem, Suhendra, R., Idroes, G. M., Suhendrayatna, Marwan, and Riza, M. (2019). Geochemistry of Warm Springs in the Ie Brôuk Hydrothermal Areas at Aceh Besar District, IOP Conference Series: Materials Science and Engineering, Vol. 523, 012010. doi:10.1088/1757-899X/523/1/012010.
  19. Piper, A. M. (1944). A Graphic Procedure in the Geochemical Interpretation of Water-Analyses, Transactions, American Geophysical Union, Vol. 25, No. 6, 914. doi:10.1029/TR025i006p00914.
  20. Giggenbach, W. F. (1988). Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators, Geochimica et Cosmochimica Acta, Vol. 52, No. 12, 2749–2765. doi:10.1016/0016-7037(88)90143-3.
  21. Mahon, W. A. J., Klyen, L. E., and Rhode, M. (1980). Neutral Sodium/Bicarbonate/Sulfate Hot Waters in Geothermal Systems.
  22. Tsutsui, W. M. (1996). W. Edwards Deming and the Origins of Quality Control in Japan, Journal of Japanese Studies, Vol. 22, No. 2, 295. doi:10.2307/132975.
  23. Fournier, R. O., and Truesdell, A. H. (1973). An Empirical Na K Ca Geothermometer for Natural Waters, Geochimica et Cosmochimica Acta, Vol. 37, No. 5, 1255–1275. doi:10.1016/0016-7037(73)90060-4.
  24. Idroes, R., Yusuf, M., Alatas, M., Subhan, Lala, A., Muhammad, Suhendra, R., Idroes, G. M., and Marwan. (2019). Geochemistry of Sulphate Spring in the Ie Jue Geothermal Areas at Aceh Besar District, Indonesia, IOP Conference Series: Materials Science and Engineering, Vol. 523, No. 1, 012012. doi:10.1088/1757-899X/523/1/012012.
  25. Stracke, A. (2021). A Process-Oriented Approach to Mantle Geochemistry, Chemical Geology, Vol. 579, 120350. doi:10.1016/j.chemgeo.2021.120350.
  26. Balaram, V. (2021). Current and Emerging Analytical Techniques for Geochemical and Geochronological Studies, Geological Journal, Vol. 56, No. 5, 2300–2359. doi:10.1002/gj.4005.
  27. Balaram, V. (2021). New Frontiers in Analytical Techniques — Opportunities and Challenges in Geochemical Research, Journal of the Geological Society of India, Vol. 97, No. 4, 331–334. doi:10.1007/s12594-021-1690-6.
  28. Puetz, S. J., Condie, K. C., Sundell, K., Roberts, N. M. W., Spencer, C. J., Boulila, S., and Cheng, Q. (2024). The Replication Crisis and Its Relevance to Earth Science Studies: Case Studies and Recommendations, Geoscience Frontiers, Vol. 15, No. 4, 101821. doi:10.1016/j.gsf.2024.101821.
  29. Xu, H., and Zhang, C. (2023). Development and Applications of GIS-Based Spatial Analysis in Environmental Geochemistry in the Big Data Era, Environmental Geochemistry and Health, Vol. 45, No. 4, 1079–1090. doi:10.1007/s10653-021-01183-8.
  30. Lemière, B., and Uvarova, Y. A. (2020). New Developments in Field-Portable Geochemical Techniques and On-Site Technologies and Their Place in Mineral Exploration, Geochemistry: Exploration, Environment, Analysis, Vol. 20, No. 2, 205–216. doi:10.1144/geochem2019-044.
  31. Chen, T., Zhang, T., and Li, H. (2020). Applications of Laser-Induced Breakdown Spectroscopy (LIBS) Combined with Machine Learning in Geochemical and Environmental Resources Exploration, TrAC Trends in Analytical Chemistry, Vol. 133, 116113. doi:10.1016/j.trac.2020.116113.

Downloads

Published

2024-04-29

How to Cite

Lala, A., Yusuf, M., Suhendra, R., Maulydia, N. B., Dharma, D. B., Saiful, S., & Idroes, R. (2024). Characterization of Geochemical and Isotopic Profiles in the Southern Zone Geothermal Systems of Mount Seulawah Agam, Aceh Province, Indonesia. Leuser Journal of Environmental Studies, 2(1), 30–40. https://doi.org/10.60084/ljes.v2i1.172

Issue

Section

Articles