Ensuring Accuracy: Critical Validation Techniques in Geochemical Analysis for Sustainable Geothermal Energy Development


  • Ghazi Mauer Idroes Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Suhendrayatna Suhendrayatna Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Khairan Khairan Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Eko Suhartono Department of Medical Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Banjarbaru 70124, Indonesia
  • Rasi Prasetio Organisasi Riset Tenaga Nuklir, Badan Riset dan Inovasi Nasional (ORTN - BRIN), Jakarta Pusat 10340, Indonesia
  • Medyan Riza Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia




Reliability, Geothermal exploration, Accuracy, Geochemistry , Validation method


Geochemical analysis is a critical tool in geothermal exploration, providing valuable insights into reservoir characteristics. However, obtaining accurate and reliable geochemical data requires rigorous validation techniques. This review examines key factors affecting the accuracy of geochemical data and discusses best practices for ensuring quality. Proper sampling methods, including selection of representative locations, use of appropriate equipment, and adherence to robust protocols for sample collection, filtration, preservation, and storage, are essential for maintaining integrity. Analytical techniques must be carefully selected, with regular calibration and standardization of instruments using certified reference materials. Implementing comprehensive quality assurance and quality control procedures, such as analyzing blanks, duplicates, and spike samples, helps monitor precision and accuracy. Data interpretation should consider the complexities of the geological and hydrological settings, integrating multiple lines of evidence. By following established guidelines and continuously updating methods based on emerging technologies and inter-laboratory comparisons, geothermal teams can optimize the reliability of their geochemical data. Accurate and precise geochemical information, when combined with geological, geophysical, and hydrological data, enables informed decision-making and enhances the success of geothermal projects. As geothermal energy gains importance in the transition to sustainable resources, ensuring the accuracy of geochemical analysis will be crucial for effective exploration and development.


Download data is not yet available.


  1. Chen, S., Zhang, Q., Andrews-Speed, P., and Mclellan, B. (2020). Quantitative Assessment of the Environmental Risks of Geothermal Energy: A Review, Journal of Environmental Management, Vol. 276, 111287. doi:10.1016/j.jenvman.2020.111287.
  2. Rahayudin, Y., Kashiwaya, K., Tada, Y., Iskandar, I., Koike, K., Atmaja, R. W., and Herdianita, N. R. (2020). On the Origin and Evolution of Geothermal Fluids in the Patuha Geothermal Field, Indonesia Based on Geochemical and Stable Isotope Data, Applied Geochemistry, Vol. 114, 104530. doi:10.1016/j.apgeochem.2020.104530.
  3. Rabbani, A., Banks, J., Brinsky, J., and Palombi, D. (2022). Multivariate and Geochemical Analyses of Brines in Devonian Strata of the Western Canada Sedimentary Basin for Geothermal Energy Development, Geothermics, Vol. 105, 102498. doi:10.1016/j.geothermics.2022.102498.
  4. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., and Mahlia, T. M. I. (2019). Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia, Energies, Vol. 12, No. 23, 4442. doi:10.3390/en12234442.
  5. Rashid, A., Khattak, S. A., Ali, L., Zaib, M., Jehan, S., Ayub, M., and Ullah, S. (2019). Sustainable Development of Enhanced Geothermal Systems Based on Geotechnical Research – a Review, Microchemical Journal, Vol. 145, 1058–1065. doi:10.1016/j.microc.2018.12.025.
  6. Kumari, W. G. P., and Ranjith, P. G. (2019). Sustainable Development of Enhanced Geothermal Systems Based on Geotechnical Research – a Review, Earth-Science Reviews, Vol. 199, 102955. doi:10.1016/j.earscirev.2019.102955.
  7. Jung, H., Koh, D.-C., Kim, Y., Jeen, S.-W., and Lee, J. (2020). Stable Isotopes of Water and Nitrate for the Identification of Groundwater Flowpaths: A Review, Water, Vol. 12, No. 1, 138. doi:10.3390/w12010138.
  8. Gan, H., Liu, Z., Wang, G., Liao, Y., Wang, X., Zhang, Y., Zhao, J., and Liu, Z. (2022). Permeability and Porosity Changes in Sandstone Reservoir by Geothermal Fluid Reinjection: Insights from a Laboratory Study, Water, Vol. 14, No. 19, 3131. doi:10.3390/w14193131.
  9. Mouchot, J., Scheiber, J., Florencio, J., Seibt, A., and Jähnichen, S. (2019). Scale and Corrosion Control Program, Example of Two Geothermal Plants in Operation in the Upper Rhine Graben, Proceedings of the European Geothermal Congress.
  10. Bowman, S., Agrawal, V., and Sharma, S. (2023). Role of pH and Eh in Geothermal Systems: Thermodynamic Examples and Impacts on Scaling and Corrosion, Geothermics, Vol. 111, 102710. doi:10.1016/j.geothermics.2023.102710.
  11. Goldberg, V., Winter, D., Nitschke, F., Held, S., Groß, F., Pfeiffle, D., Uhde, J., Morata, D., Koschikowski, J., and Kohl, T. (2023). Development of a Continuous Silica Treatment Strategy for Metal Extraction Processes in Operating Geothermal Plants, Desalination, Vol. 564, 116775. doi:10.1016/j.desal.2023.116775.
  12. Ebrahimi, D., Nouraliee, J., and Dashti, A. (2019). Assessing the Geothermal Potential of the Shahin Dezh Region, Based on the Geological, Geochemical and Geophysical Evidence, Journal of African Earth Sciences, Vol. 152, 84–94. doi:10.1016/j.jafrearsci.2019.02.005.
  13. Archer, R. (2020). Geothermal Energy, Future Energy, Elsevier, 431–445. doi:10.1016/B978-0-08-102886-5.00020-7.
  14. Chien, N. P., and Lautz, L. K. (2018). Discriminant Analysis as a Decision-Making Tool for Geochemically Fingerprinting Sources of Groundwater Salinity, Science of The Total Environment, Vol. 618, 379–387. doi:10.1016/j.scitotenv.2017.11.019.
  15. Grunsky, E. C., and Caritat, P. de. (2020). State-of-the-Art Analysis of Geochemical Data for Mineral Exploration, Geochemistry: Exploration, Environment, Analysis, Vol. 20, No. 2, 217–232. doi:10.1144/geochem2019-031.
  16. Zuo, R., Wang, J., Xiong, Y., and Wang, Z. (2021). The Processing Methods of Geochemical Exploration Data: Past, Present, and Future, Applied Geochemistry, Vol. 132, 105072. doi:10.1016/j.apgeochem.2021.105072.
  17. Idroes, G. M., Hardi, I., Hilal, I. S., Utami, R. T., Noviandy, T. R., and Idroes, R. (2024). Economic Growth and Environmental Impact: Assessing the Role of Geothermal Energy in Developing and Developed Countries, Innovation and Green Development, Vol. 3, No. 3, 100144. doi:10.1016/j.igd.2024.100144.
  18. Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., and Idroes, R. (2024). The Dynamic Impact of Non-renewable and Renewable Energy on Carbon Dioxide Emissions and Ecological Footprint in Indonesia, Carbon Research, Vol. 3, No. 1, 35. doi:10.1007/s44246-024-00117-0.
  19. Idroes, G. M., Syahnur, S., Majid, M. S. A., Idroes, R., Kusumo, F., and Hardi, I. (2023). Unveiling the Carbon Footprint: Biomass vs. Geothermal Energy in Indonesia, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 10–18. doi:10.60084/eje.v1i1.47.
  20. Witter, J. B., Trainor-Guitton, W. J., and Siler, D. L. (2019). Uncertainty and Risk Evaluation during the Exploration Stage of Geothermal Development: A Review, Geothermics, Vol. 78, 233–242. doi:10.1016/j.geothermics.2018.12.011.
  21. Ciriaco, A. E., Zarrouk, S. J., and Zakeri, G. (2020). Geothermal Resource and Reserve Assessment Methodology: Overview, Analysis and Future Directions, Renewable and Sustainable Energy Reviews, Vol. 119, 109515. doi:10.1016/j.rser.2019.109515.
  22. Hussainzadeh, J., Samani, S., and Mahaqi, A. (2023). Investigation of the Geochemical Evolution of Groundwater Resources in the Zanjan Plain, NW Iran, Environmental Earth Sciences, Vol. 82, No. 5, 123. doi:10.1007/s12665-023-10790-w.
  23. Fentahun, A., Mechal, A., and Karuppannan, S. (2023). Hydrochemistry and Quality Appraisal of Groundwater in Birr River Catchment, Central Blue Nile River Basin, Using Multivariate Techniques and Water Quality Indices, Environmental Monitoring and Assessment, Vol. 195, No. 6, 655. doi:10.1007/s10661-023-11198-6.
  24. Kmiecik, E., Wątor, K., Tomaszewska, B., Sekuła, K., and Mika, A. (2019). Methodological Aspects of pH and Ec Measurements in Geothermal Water, Bulletin of Geography. Physical Geography Series, Vol. 17, No. 1, 39–47. doi:10.2478/bgeo-2019-0013.
  25. Zeyrek, M., Ertekin, K., Kacmaz, S., Seyis, C., and Inan, S. (2010). An Ion Chromatography Method for the Determination of Major Anions in Geothermal Water Samples, Geostandards and Geoanalytical Research, Vol. 34, No. 1, 67–77.
  26. Arnórsson, S., Bjarnason, J. Ö., Giroud, N., Gunnarsson, I., and Stefánsson, A. (2006). Sampling and Analysis of Geothermal Fluids, Geofluids, Vol. 6, No. 3, 203–216. doi:10.1111/j.1468-8123.2006.00147.x.
  27. Satrio, S., Prasetio, R., Syah Alam, B. Y. C. S. S., Iskandarsyah, T. Y. W. M., Muhammadsyah, F., Hadian, M. S. D., and Hendarmawan, H. (2020). Isotope and Geochemistry Characterization of Hot Springs and Cold Springs of Sembalun – Rinjani Area, East Lombok, West Nusa Tenggara – Indonesia, Indonesian Journal of Chemistry, Vol. 20, No. 6, 1347. doi:10.22146/ijc.50790.
  28. Hou, Z., Xu, T., Li, S., Jiang, Z., Feng, B., Cao, Y., Feng, G., Yuan, Y., and Hu, Z. (2019). Reconstruction of Different Original Water Chemical Compositions and Estimation of Reservoir Temperature From Mixed Geothermal Water Using the Method of Integrated Multicomponent Geothermometry: A Case Study of the Gonghe Basin, Northeastern Tibetan Plate, Applied Geochemistry, Vol. 108, 104389. doi:10.1016/j.apgeochem.2019.104389.
  29. Deng, J., Lin, W., Linxiao, X., and Li, C. (2022). The Estimation of Geothermal Reservoir Temperature Based on Integrated Multicomponent Geothermometry: A case study in the Jizhong Depression, North China Plain, Water.
  30. Pereira, M. L., Matias, D., Viveiros, F., Moreno, L., Silva, C., Zanon, V., and Uchôa, J. (2022). The Contribution of Hydrothermal Mineral Alteration Analysis and Gas Geothermometry for Understanding High-Temperature Geothermal Fields – the Case of Ribeira Grande Geothermal Field, Azores, Geothermics, Vol. 105, 102519. doi:10.1016/j.geothermics.2022.102519.
  31. Zhu, X., Wang, G., Wang, X., Qi, S., Ma, F., Zhang, W., and Zhang, H. (2022). Hydrogeochemical and Isotopic Analyses of Deep Geothermal Fluids in the Wumishan Formation in Xiong’an New Area, China, Lithosphere, Vol. 2021, No. Special 5. doi:10.2113/2022/2576752.
  32. Yuan, J., Xu, F., and Zheng, T. (2022). The Genesis of Saline Geothermal Groundwater in the Coastal Area of Guangdong Province: Insight from Hydrochemical and Isotopic Analysis, Journal of Hydrology, Vol. 605, 127345. doi:10.1016/j.jhydrol.2021.127345.
  33. Liotta, D., Brogi, A., Ruggieri, G., Rimondi, V., Zucchi, M., Helgadóttir, H. M., Montegrossi, G., and Friðleifsson, G. Ó. (2020). Fracture Analysis, Hydrothermal Mineralization and Fluid Pathways in the Neogene Geitafell Central Volcano: Insights for the Krafla Active Geothermal System, Iceland, Journal of Volcanology and Geothermal Research, Vol. 391, 106502. doi:10.1016/j.jvolgeores.2018.11.023.
  34. Liu, Y., Wagner, T., and Fußwinkel, T. (2024). An Integrated Approach for Quantifying Fluid Inclusion Data Combining Microthermometry, LA-ICP-MS, and Thermodynamic Modeling, Chemical Geology, Vol. 644, 121863. doi:10.1016/j.chemgeo.2023.121863.
  35. Alsemgeest, J., Auqué, L. F., and Gimeno, M. J. (2021). Verification and Comparison of Two Thermodynamic Databases through Conversion to PHREEQC and Multicomponent Geothermometrical Calculations, Geothermics, Vol. 91, 102036. doi:10.1016/j.geothermics.2020.102036.
  36. Hakala, J. A., Paukert Vankeuren, A. N., Scheuermann, P. P., Lopano, C., and Guthrie, G. D. (2021). Predicting the Potential for Mineral Scale Precipitation in Unconventional Reservoirs Due to Fluid-Rock and Fluid Mixing Geochemical Reactions, Fuel, Vol. 284, 118883. doi:10.1016/j.fuel.2020.118883.
  37. Dunn, P. J. H., Hill, S., Cowen, S., Goenaga-Infante, H., Sargent, M., Gören, A. C., Bilsel, M., Şimşek, A., Ogrinc, N., Potočnik, D., Armishaw, P., Hai, L., Konopelko, L., Chubchenko, Y., Chesson, L. A., van der Peijl, G., Blaga, C., Posey, R., Camin, F., Chernyshev, A., and Chowdhury, S. A. (2019). Lessons Learned from Inter-Laboratory Studies of Carbon Isotope Analysis of Honey, Science & Justice, Vol. 59, No. 1, 9–19. doi:10.1016/j.scijus.2018.08.003.
  38. Verma, M. P., Izquiedo, G., Barth, J. A. C., Rayes-Delgado, L., Chandrasekhar, T., Algabre, J. E., Caballero, M. A. C., Godoy, J. M., Sanchez, M., Brusca, L., Malimo, S., Monvoisin, G., Kretzschmar, T., Villanueva-Estrada, R. E., Armienta, M. A., and De Silva, N. (2022). Interlaboratory Test for Chemical Analysis of Geothermal Fluids: A New Approach to Determine Deep Geothermal Reservoir Fluid Composition with Uncertainty Propagation, Applied Geochemistry, Vol. 147, 105477. doi:10.1016/j.apgeochem.2022.105477.
  39. Wątor, K., and Dobrzyński, D. (2022). Towards a Better Practice in Water Sampling: Case Studies on Used in Practice Geothermal Waters, Chemosphere, Vol. 303, 134913. doi:10.1016/j.chemosphere.2022.134913.
  40. Balaram, V., and Subramanyam, K. S. V. (2022). Sample Preparation for Geochemical Analysis: Strategies and Significance, Advances in Sample Preparation, Vol. 1, 100010. doi:10.1016/j.sampre.2022.100010.
  41. Richards, L. A., Kumar, A., Shankar, P., Gaurav, A., Ghosh, A., and Polya, D. A. (2020). Distribution and Geochemical Controls of Arsenic and Uranium in Groundwater-Derived Drinking Water in Bihar, India, International Journal of Environmental Research and Public Health, Vol. 17, No. 7, 2500. doi:10.3390/ijerph17072500.
  42. Gaikwad, S. K., Kadam, A. K., Ramgir, R. R., Kashikar, A. S., Wagh, V. M., Kandekar, A. M., Gaikwad, S. P., Madale, R. B., Pawar, N. J., and Kamble, K. D. (2020). Assessment of the Groundwater Geochemistry from a Part of West Coast of India Using Statistical Methods and Water Quality Index, HydroResearch, Vol. 3, 48–60. doi:10.1016/j.hydres.2020.04.001.
  43. Balaram, V. (2021). Strategies to Overcome Interferences in Elemental and Isotopic Geochemical Analysis by Quadrupole Inductively Coupled Plasma Mass Spectrometry: A Critical Evaluation of the Recent Developments, Rapid Communications in Mass Spectrometry, Vol. 35, No. 10. doi:10.1002/rcm.9065.
  44. Lemière, B., and Uvarova, Y. A. (2020). New Developments in Field-Portable Geochemical Techniques and On-Site Technologies and Their Place in Mineral Exploration, Geochemistry: Exploration, Environment, Analysis, Vol. 20, No. 2, 205–216. doi:10.1144/geochem2019-044.
  45. Balaram, V. (2021). Current and Emerging Analytical Techniques for Geochemical and Geochronological Studies, Geological Journal, Vol. 56, No. 5, 2300–2359. doi:10.1002/gj.4005.
  46. Jung, Y.-Y., Choi, S.-H., Choi, M., Bong, Y.-S., Park, M.-Y., Lee, K.-S., and Shin, W.-J. (2023). Acid Mine Drainage and Smelter-Derived Sources Affecting Water Geochemistry in the Upper Nakdong River, South Korea, Science of The Total Environment, Vol. 880, 163353. doi:10.1016/j.scitotenv.2023.163353.
  47. Caritat, P. de. (2022). The National Geochemical Survey of Australia: Review and Impact, Geochemistry: Exploration, Environment, Analysis, Vol. 22, No. 4. doi:10.1144/geochem2022-032.
  48. Piercey, S. J. (2014). Modern Analytical Facilities 2. A Review of Quality Assurance and Quality Control (QA/QC) Procedures for Lithogeochemical Data, Geoscience Canada, Vol. 41, No. 1, 75. doi:10.12789/geocanj.2014.41.035.
  49. Bourdeau, J. E., Zhang, S. E., Lawley, C. J. M., Parsa, M., Nwaila, G. T., and Ghorbani, Y. (2023). Predictive Geochemical Exploration: Inferential Generation of Modern Geochemical Data, Anomaly Detection and Application to Northern Manitoba, Natural Resources Research, Vol. 32, No. 6, 2355–2386. doi:10.1007/s11053-023-10273-6.
  50. Parsa, M., Sadeghi, M., and Grunsky, E. (2022). Innovative Methods Applied to Processing and Interpreting Geochemical Data, Journal of Geochemical Exploration, Vol. 237, 106983. doi:10.1016/j.gexplo.2022.106983.
  51. Piochi, M., Cantucci, B., Montegrossi, G., and Currenti, G. (2021). Hydrothermal Alteration at the San Vito Area of the Campi Flegrei Geothermal System in Italy: Mineral Review and Geochemical Modeling, Minerals, Vol. 11, No. 8, 810. doi:10.3390/min11080810.
  52. Wolkersdorfer, C., Nordstrom, D. K., Beckie, R. D., Cicerone, D. S., Elliot, T., Edraki, M., Valente, T., França, S. C. A., Kumar, P., Lucero, R. A. O., and Soler i Gil, A. (2020). Guidance for the Integrated Use of Hydrological, Geochemical, and Isotopic Tools in Mining Operations, Mine Water and the Environment, Vol. 39, No. 2, 204–228. doi:10.1007/s10230-020-00666-x.
  53. Vespasiano, G., Muto, F., and Apollaro, C. (2021). Geochemical, Geological and Groundwater Quality Characterization of a Complex Geological Framework: The Case Study of the Coreca Area (Calabria, South Italy), Geosciences, Vol. 11, No. 3, 121. doi:10.3390/geosciences11030121.
  54. Li, X., Wu, H., Qian, H., and Gao, Y. (2018). Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China, Water, Vol. 10, No. 3, 338. doi:10.3390/w10030338.
  55. Balaram, V., and Satyanarayanan, M. (2022). Data Quality in Geochemical Elemental and Isotopic Analysis, Minerals, Vol. 12, No. 8, 999. doi:10.3390/min12080999.
  56. Geboy, N. J., and Engle, M. A. (2011). Quality Assurance and Quality Control of Geochemical Data: A Primer for the Research Scientist, Open-File Report 2011–1187, US Geological Survey, Reston.
  57. Nelson, F. (2014). Quality Control Program for a Geochemical Laboratory, Department of Geological Sciences, University of Saskatchewan, Canada, University of Saskatchewan.
  58. Purba, D. P., Adityatama, D. W., Umam, M. F., and Muhammad, F. (2019). Key Considerations in Developing Strategy for Geothermal Exploration Drilling Project in Indonesia, Proceedings, 44th Work. Geotherm. Reserv. Eng.
  59. Stelling, P., Shevenell, L., Hinz, N., Coolbaugh, M., Melosh, G., and Cumming, W. (2016). Geothermal Systems in Volcanic Arcs: Volcanic Characteristics and Surface Manifestations As Indicators of Geothermal Potential and Favorability Worldwide, Journal of Volcanology and Geothermal Research, Vol. 324, 57–72. doi:10.1016/j.jvolgeores.2016.05.018.
  60. Şener, M. F., and Baba, A. (2019). Geochemical and Hydrogeochemical Characteristics and Evolution of Kozaklı Geothermal Fluids, Central Anatolia, Turkey, Geothermics, Vol. 80, 69–77. doi:10.1016/j.geothermics.2019.02.012.
  61. Yang, R., Huang, Z., Shi, Y., Yang, Z., and Huang, P. (2019). Laboratory Investigation on Cryogenic Fracturing of Hot Dry Rock under Triaxial-Confining Stresses, Geothermics, Vol. 79, 46–60. doi:10.1016/j.geothermics.2019.01.008.
  62. Daniele, L., Taucare, M., Viguier, B., Arancibia, G., Aravena, D., Roquer, T., Sepúlveda, J., Molina, E., Delgado, A., Muñoz, M., and Morata, D. (2020). Exploring the Shallow Geothermal Resources in the Chilean Southern Volcanic Zone: Insight from the Liquiñe Thermal Springs, Journal of Geochemical Exploration, Vol. 218, 106611. doi:10.1016/j.gexplo.2020.106611.
  63. Inostroza, M., Tassi, F., Aguilera, F., Sepúlveda, J. P., Capecchiacci, F., Venturi, S., and Capasso, G. (2020). Geochemistry of Gas and Water Discharge from the Magmatic-Hydrothermal System of Guallatiri Volcano, Northern Chile, Bulletin of Volcanology, Vol. 82, No. 7, 57. doi:10.1007/s00445-020-01396-2.
  64. Daskalopoulou, K., Gagliano, A. L., Calabrese, S., Li Vigni, L., Longo, M., Kyriakopoulos, K., Pecoraino, G., and D’Alessandro, W. (2019). Degassing at the Volcanic/Geothermal System of Kos (Greece): Geochemical Characterization of the Released Gases and CO 2 Output Estimation, Geofluids, Vol. 2019, 1–16. doi:10.1155/2019/3041037.
  65. García-Gil, A., Garrido Schneider, E., Mejías, M., Barceló, D., Vázquez-Suñé, E., and Díaz-Cruz, S. (2018). Occurrence of Pharmaceuticals and Personal Care Products in the Urban Aquifer of Zaragoza (Spain) and Its Relationship with Intensive Shallow Geothermal Energy Exploitation, Journal of Hydrology, Vol. 566, 629–642. doi:10.1016/j.jhydrol.2018.09.066.
  66. Shah, M., Sircar, A., Shaikh, N., Patel, K., Thakar, V., Sharma, D., Sarkar, P., and Vaidya, D. (2018). Groundwater Analysis of Dholera Geothermal Field, Gujarat, India for Suitable Applications, Groundwater for Sustainable Development, Vol. 7, 143–156. doi:10.1016/j.gsd.2018.05.002.
  67. Regenspurg, S., Iannotta, J., Feldbusch, E., Zimmermann, F. J., and Eichinger, F. (2020). Hydrogen Sulfide Removal from Geothermal Fluids by Fe(III)-Based Additives, Geothermal Energy, Vol. 8, No. 1, 21. doi:10.1186/s40517-020-00174-9.
  68. Mika, A., Wątor, K., Kmiecik, E., and Sekuła, K. (2019). Determination of Iodine in Geothermal Water Samples – Preliminary ICP-MS Method Validation Results, Water Supply, Vol. 19, No. 4, 1264–1270. doi:10.2166/ws.2018.186.
  69. Rubin, R., Young, K., Badgett, A., Kolker, A., Levine, A., Wall, A., Witter, E., and Dobson, P. (2022). GeoRePORT Protocol Volume II: Geological Assessment ToolGolden, CO (United States). doi:10.2172/1859734.
  70. Awaleh, M. O., Boschetti, T., Adaneh, A. E., Daoud, M. A., Ahmed, M. M., Dabar, O. A., Soubaneh, Y. D., Kawalieh, A. D., and Kadieh, I. H. (2020). Hydrochemistry and Multi-Isotope Study of the Waters from Hanlé-Gaggadé Grabens (Republic of Djibouti, East African Rift System): A Low-Enthalpy Geothermal Resource from a Transboundary Aquifer, Geothermics, Vol. 86, 101805. doi:10.1016/j.geothermics.2020.101805.
  71. Krieger, M., Kurek, K. A., and Brommer, M. (2022). Global Geothermal Industry Data Collection: A Systematic Review, Geothermics, Vol. 104, 102457. doi:10.1016/j.geothermics.2022.102457.
  72. Matera, P. F., Ventruti, G., Zucchi, M., Brogi, A., Capezzuoli, E., Liotta, D., Yu, T.-L., Shen, C.-C., Huntington, K. W., Rinyu, L., and Kele, S. (2021). Geothermal Fluid Variation Recorded by Banded Ca-Carbonate Veins in a Fault-Related, Fissure Ridge-Type Travertine Depositional System (Iano, southern Tuscany, Italy), Geofluids, Vol. 2021, 1–28. doi:10.1155/2021/8817487.
  73. Yang, H., Xiao, Y., Zhang, Y., Wang, L., Wang, J., Hu, W., Liu, G., Liu, F., Hao, Q., Wang, C., and Xu, X. (2024). Lithology Controls on the Mixing Behavior and Discharge Regime of Thermal Groundwater in the Bogexi Geothermal Field on Tibetan Plateau, Journal of Hydrology, Vol. 628, 130523. doi:10.1016/j.jhydrol.2023.130523.
  74. Dopffel, N., Jansen, S., and Gerritse, J. (2021). Microbial Side Effects of Underground Hydrogen Storage – Knowledge Gaps, Risks and Opportunities for Successful Implementation, International Journal of Hydrogen Energy, Vol. 46, No. 12, 8594–8606. doi:10.1016/j.ijhydene.2020.12.058.
  75. Villanueva, F., Ródenas, M., Ruus, A., Saffell, J., and Gabriel, M. F. (2022). Sampling and Analysis Techniques for Inorganic Air Pollutants in Indoor Air, Applied Spectroscopy Reviews, Vol. 57, No. 7, 531–579. doi:10.1080/05704928.2021.2020807.
  76. Saberinasr, A., Morsali, M., Hashemnejad, A., and Hassanpour, J. (2019). Determining the Origin of Groundwater Elements Using Hydrochemical Data (Case Study: Kerman Water Conveyance Tunnel), Environmental Earth Sciences, Vol. 78, No. 6, 198. doi:10.1007/s12665-019-8182-7.
  77. Sadeghi, H., and Singh, R. M. (2023). Driven Precast Concrete Geothermal Energy Piles: Current State of Knowledge, Building and Environment, Vol. 228, 109790. doi:10.1016/j.buildenv.2022.109790.
  78. Pacheco, F. A. L., do Valle Junior, R. F., de Melo Silva, M. M. A. P., Tarlé Pissarra, T. C., de Souza Rolim, G., de Melo, M. C., Valera, C. A., Moura, J. P., and Sanches Fernandes, L. F. (2023). Geochemistry and Contamination of Sediments and Water in Rivers Affected by the Rupture of Tailings Dams (Brumadinho, Brazil), Applied Geochemistry, Vol. 152, 105644. doi:10.1016/j.apgeochem.2023.105644.
  79. Bundschuh, J., and Tomaszewska, B. (2018). Geothermal Water Management, CRC Press.
  80. Smee, B. W., Bloom, L., Arne, D., and Heberlein, D. (2024). Practical Applications of Quality Assurance and Quality Control in Mineral Exploration, Resource Estimation and Mining Programs: A Review of Recommended International Practices, Geochemistry: Exploration, Environment, Analysis. doi:10.1144/geochem2023-046.
  81. Andrew, B. S., and Barker, S. L. L. (2018). Determination of Carbonate Vein Chemistry Using Portable X-Ray Fluorescence and Its Application to Mineral Exploration, Geochemistry: Exploration, Environment, Analysis, Vol. 18, No. 1, 85–93. doi:10.1144/geochem2016-011.
  82. Bacon, J. R., Butler, O. T., Cairns, W. R. L., Cavoura, O., Cook, J. M., Davidson, C. M., and Mertz-Kraus, R. (2024). Atomic Spectrometry Update – a Review of Advances in Environmental Analysis, Journal of Analytical Atomic Spectrometry, Vol. 39, No. 1, 11–65. doi:10.1039/D3JA90044D.
  83. Verma, S. P. (2020). Bivariate Data and Calibration of Experimental Systems, Road from Geochemistry to Geochemometrics, Springer Singapore, Singapore, 403–422. doi:10.1007/978-981-13-9278-8_9.
  84. El Haddad, J., Canioni, L., and Bousquet, B. (2014). Good Practices in LIBS Analysis: Review and Advices, Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 101, 171–182. doi:10.1016/j.sab.2014.08.039.
  85. Sanghapi, H. K., Jain, J., Bol’shakov, A., Lopano, C., McIntyre, D., and Russo, R. (2016). Determination of Elemental Composition of Shale Rocks by Laser Induced Breakdown Spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 122, 9–14. doi:10.1016/j.sab.2016.05.011.
  86. Sun, G., Wu, Y., Feng, X., Wu, X., Li, X., Deng, Q., Wang, F., and Fu, X. (2021). Precise Analysis of Antimony Isotopic Composition in Geochemical Materials by MC-ICP-MS, Chemical Geology, Vol. 582, 120459. doi:10.1016/j.chemgeo.2021.120459.
  87. Ni, W., Mao, X., Yao, M., Guo, X., Sun, Q., Gao, X., and Zhang, H. (2022). Bismuth Fire Assay Preconcentration and Empirical Coefficient LA-ICP-MS for the Determination of Ultra-Trace Pt and Pd in Geochemical Samples, Scientific Reports, Vol. 12, No. 1, 11555. doi:10.1038/s41598-022-15881-5.
  88. Fletcher, W. K. (2013). Analytical Methods in Geochemical Prospecting, Elsevier.
  89. Valley, J. W., and Cole, D. R. (2018). Stable Isotope Geochemistry.
  90. Munk, L. A., Boutt, D. F., Moran, B. J., McKnight, S. V., and Jenckes, J. (2021). Hydrogeologic and Geochemical Distinctions in Freshwater‐Brine Systems of an Andean Salar, Geochemistry, Geophysics, Geosystems, Vol. 22, No. 3. doi:10.1029/2020GC009345.
  91. Hobson, C., Kulkarni, H. V., Johannesson, K. H., Bednar, A., Tappero, R., Mohajerin, T. J., Sheppard, P. R., Witten, M. L., Hettiarachchi, G. M., and Datta, S. (2020). Origin of Tungsten and Geochemical Controls on Its Occurrence and Mobilization in Shallow Sediments from Fallon, Nevada, USA, Chemosphere, Vol. 260, 127577. doi:10.1016/j.chemosphere.2020.127577.
  92. Bailey, A. S., Jamieson, H. E., and Radková, A. B. (2021). Geochemical Characterization of Dust from Arsenic-Bearing Tailings, Giant Mine, Canada, Applied Geochemistry, Vol. 135, 105119. doi:10.1016/j.apgeochem.2021.105119.
  93. Goodman, A. J., Scircle, A., Kimble, A., Harris, W., Calvitti, B., Sirkis, D., Mathurin, L., Grassi, V., Ranville, J. F., and Bednar, A. J. (2023). Critical Metal Geochemistry in Groundwaters Influenced by Dredged Material, Science of The Total Environment, Vol. 884, 163725. doi:10.1016/j.scitotenv.2023.163725.
  94. Schwarzbauer, J., and Jovančićević, B. (2020). Introduction to Analytical Methods in Organic Geochemistry, Springer Nature.
  95. Liu, M., Zhang, Q., Zhang, Y., Zhang, Z., Huang, F., and Yu, H. (2020). High‐Precision Cd Isotope Measurements of Soil and Rock Reference Materials by MC‐ICP‐MS with Double Spike Correction, Geostandards and Geoanalytical Research, Vol. 44, No. 1, 169–182. doi:10.1111/ggr.12291.
  96. Ytsma, C. R., Knudson, C. A., Dyar, M. D., McAdam, A. C., Michaud, D. D., and Rollosson, L. M. (2020). Accuracies and Detection Limits of Major, Minor, and Trace Element Quantification in Rocks by Portable Laser-Induced Breakdown Spectroscopy, Spectrochimica Acta Part B: Atomic Spectroscopy, Vol. 171, 105946. doi:10.1016/j.sab.2020.105946.
  97. Kreitler, C. W. (2023). Geochemical Techniques for Identifying Sources of Ground-Water Salinization, Routledge, Boca Raton. doi:10.1201/9780203753668.
  98. Huo, Z., Hao, S., Liu, B., Zhang, J., Ding, J., Tang, X., Li, C., and Yu, X. (2020). Geochemical Characteristics and Hydrocarbon Expulsion of Source Rocks in the First Member of the Qingshankou Formation in the Qijia-Gulong Sag, Songliao Basin, Northeast China: Evaluation of Shale Oil Resource Potential, Energy Science & Engineering, Vol. 8, No. 5, 1450–1467. doi:10.1002/ese3.603.
  99. Sargent, M. (2020). Traceability in Analytical Atomic Spectrometry: Elemental Analysis Comes Full Circle, Journal of Analytical Atomic Spectrometry, Vol. 35, No. 11, 2479–2486. doi:10.1039/D0JA00236D.
  100. Birdwell, J. E., and Wilson, S. A. (2019). Variability in Results from Mineralogical and Organic Geochemical Interlaboratory Testing of U. S. Geological Survey Shale Reference Materials, Proceedings of the 7th Unconventional Resources Technology Conference, American Association of Petroleum Geologists, Tulsa, OK, USA. doi:10.15530/urtec-2019-457.
  101. Stewart, C., Damby, D. E., Tomašek, I., Horwell, C. J., Plumlee, G. S., Armienta, M. A., Hinojosa, M. G. R., Appleby, M., Delmelle, P., Cronin, S., Ottley, C. J., Oppenheimer, C., and Morman, S. (2020). Assessment of Leachable Elements in Volcanic Ashfall: A Review and Evaluation of a Standardized Protocol for Ash Hazard Characterization, Journal of Volcanology and Geothermal Research, Vol. 392, 106756. doi:10.1016/j.jvolgeores.2019.106756.
  102. Dunkl, I., von Eynatten, H., Andò, S., Lünsdorf, K., Morton, A., Alexander, B., Aradi, L., Augustsson, C., Bahlburg, H., Barbarano, M., Benedictus, A., Berndt, J., Bitz, I., Boekhout, F., Breitfeld, T., Cascalho, J., Costa, P. J. M., Ekwenye, O., Fehér, K., Flores-Aqueveque, V., Führing, P., Giannini, P., Goetz, W., Guedes, C., Gyurica, G., Hennig-Breitfeld, J., Hülscher, J., Jafarzadeh, M., Jagodziński, R., Józsa, S., Kelemen, P., Keulen, N., Kovacic, M., Liebermann, C., Limonta, M., Lužar-Oberiter, B., Markovic, F., Melcher, F., Miklós, D. G., Moghalu, O., Mounteney, I., Nascimento, D., Novaković, T., Obbágy, G., Oehlke, M., Omma, J., Onuk, P., Passchier, S., Pfaff, K., Lincoñir, L. P., Power, M., Razum, I., Resentini, A., Sági, T., Salata, D., Salgueiro, R., Schönig, J., Sitnikova, M., Sternal, B., Szakmány, G., Szokaluk, M., Thamó-Bozsó, E., Tóth, Á., Tremblay, J., Verhaegen, J., Villaseñor, T., Wagreich, M., Wolf, A., and Yoshida, K. (2020). Comparability of Heavy Mineral Data – the First Interlaboratory Round Robin Test, Earth-Science Reviews, Vol. 211, 103210. doi:10.1016/j.earscirev.2020.103210.
  103. Sciences, N. A. of, Earth, D. on, Studies, L., Sciences, B. on E., and Laboratories, C. to R. the U. S. G. S. (2020). Assuring Data Quality at US Geological Survey Laboratories.




How to Cite

Idroes, G. M., Suhendrayatna, S., Khairan, K., Suhartono, E., Prasetio, R., & Riza, M. (2024). Ensuring Accuracy: Critical Validation Techniques in Geochemical Analysis for Sustainable Geothermal Energy Development. Leuser Journal of Environmental Studies, 2(1), 19–29. https://doi.org/10.60084/ljes.v2i1.176