Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis


  • Teuku Rizky Noviandy Interdisciplinary Innovation Research Unit, Graha Primera Saintifika, Aceh Besar 23771, Indonesia
  • Irsan Hardi Economic Modeling and Data Analytics Unit, Graha Primera Saintifika, Aceh Besar 23371, Indonesia
  • Zahriah Zahriah Department of Architecture and Urban Planning, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Rahmi Sofyan Department of Early Childhood Education, Faculty of Teacher Training and Education, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Novi Reandy Sasmita Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah, Banda Aceh 23111, Indonesia
  • Iin Shabrina Hilal Department of Civil Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Ghalieb Mutig Idroes Energy and Green Economics Unit, Graha Primera Saintifika, Aceh Besar 23371, Indonesia




Clustering, AQI, GRDP, Electricity


Indonesia's archipelago presents a distinctive opportunity for targeted sustainable development due to its complex interplay of economic advancement and environmental challenges. To better understand this dynamic and identify potential areas for focused intervention, this study applied K-means clustering to 2022 data on the Air Quality Index (AQI), electricity consumption, and Gross Regional Domestic Product (GRDP). The analysis aimed to delineate the provinces into three distinct clusters, providing a clearer picture of the varying levels of economic development and environmental impact across the nation's diverse islands. Each cluster reflects specific environmental and economic dynamics, suggesting tailored policy interventions. The results show that for provinces in Cluster 1, which exhibit moderate environmental quality and lower economic activity, the introduction of sustainable agricultural enhancements, eco-tourism, and renewable energy initiatives is recommended. Cluster 2, marked by higher economic outputs and moderate environmental conditions, would benefit from the implementation of smart urban planning, stricter environmental controls, and the adoption of clean technologies. Finally, Cluster 3, which includes highly urbanized areas with robust economic growth, requires expanded green infrastructure, improved sustainable urban practices, and enhanced public transportation systems. These recommendations aim to foster balanced economic growth while preserving environmental integrity across Indonesia’s diverse landscapes.


Download data is not yet available.


  1. Herrador, M., and Van, M. L. (2024). Circular Economy Strategies in the ASEAN Region: A Comparative Study, Science of The Total Environment, Vol. 908, 168280. doi:10.1016/j.scitotenv.2023.168280.
  2. Djais, G., Fransen, J., and Koppenjan, J. (2024). Governing Sustainable Corridor Development: A Case Study of the Gilimanuk–Denpasar–Padang Bai Corridor in Indonesia, Environmental Policy and Governance. doi:10.1002/eet.2104.
  3. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Enhancing Loan Approval Decision-Making: An Interpretable Machine Learning Approach Using LightGBM for Digital Economy Development, Malaysian Journal of Computing (MJOC), Vol. 9, No. 1, 1734–1745. doi:10.24191/mjoc.v9i1.25691.
  4. Kurniadi, A., Weller, E., Salmond, J., and Aldrian, E. (2024). Future Projections of Extreme Rainfall Events in Indonesia, International Journal of Climatology, Vol. 44, No. 1, 160–182. doi:10.1002/joc.8321.
  5. Tumonggor, M. K., Karafet, T. M., Hallmark, B., Lansing, J. S., Sudoyo, H., Hammer, M. F., and Cox, M. P. (2013). The Indonesian Archipelago: An Ancient Genetic Highway Linking Asia and the Pacific, Journal of Human Genetics, Vol. 58, No. 3, 165–173.
  6. Wang, X., and Xu, X. (2024). Sustainable Resource Management and Green Economic Growth: A Global Prospective, Resources Policy, Vol. 89, 104634. doi:10.1016/j.resourpol.2024.104634.
  7. Idroes, G. M., Hardi, I., Hilal, I. S., Utami, R. T., Noviandy, T. R., and Idroes, R. (2024). Economic Growth and Environmental Impact: Assessing the Role of Geothermal Energy in Developing and Developed Countries, Innovation and Green Development, Vol. 3, No. 3, 100144. doi:10.1016/j.igd.2024.100144.
  8. Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., and Idroes, R. (2024). The Dynamic Impact of Non-renewable and Renewable Energy on Carbon Dioxide Emissions and Ecological Footprint in Indonesia, Carbon Research, Vol. 3, No. 1, 35. doi:10.1007/s44246-024-00117-0.
  9. Li, Y., Chiu, Y., and Lu, L. C. (2018). Energy and AQI Performance of 31 cities in China, Energy Policy, Vol. 122, 194–202. doi:10.1016/j.enpol.2018.07.037.
  10. Mahmudah, U., and Lola, M. S. (2023). A Two-Step Cluster for Classifying Provinces in Indonesia Based on Environmental Quality, BAREKENG: Jurnal Ilmu Matematika Dan Terapan, Vol. 17, No. 3, 1685–1694. doi:10.30598/barekengvol17iss3pp1685-1694.
  11. Giao, N. T. (2021). Assessment of Air Quality in Can Tho City, Vietnam Using Cluster Analysis, Indonesian Journal of Environmental Management and Sustainability, Vol. 5, No. 4, 154–161. doi:10.26554/ijems.2021.5.4.154-161.
  12. Idroes, G. M., Noviandy, T. R., Maulana, A., Zahriah, Z., Suhendrayatna, S., Suhartono, E., Khairan, K., Kusumo, F., Helwani, Z., and Abd Rahman, S. (2023). Urban Air Quality Classification Using Machine Learning Approach to Enhance Environmental Monitoring, Leuser Journal of Environmental Studies, Vol. 1, No. 2, 62–68. doi:10.60084/ljes.v1i2.99.
  13. Liang, D., Lu, H., Guan, Y., Feng, L., Chen, Y., and He, L. (2023). Further Mitigating Carbon Footprint Pressure in Urban Agglomeration by Enhancing the Spatial Clustering, Journal of Environmental Management, Vol. 326, 116715. doi:10.1016/j.jenvman.2022.116715.
  14. Zulkepli, N. F. S., Noorani, M. S. M., Razak, F. A., Ismail, M., and Alias, M. A. (2022). Hybridization of Hierarchical Clustering with Persistent Homology in Assessing Haze Episodes between Air Quality Monitoring Stations, Journal of Environmental Management, Vol. 306, 114434. doi:10.1016/j.jenvman.2022.114434.
  15. Tumiran, T., Budiarto, R., Sarjiya, S., Putranto, L. M., Noorzakiah Naimah, D. Y., Dharmasakya, A. H., and Priyanto, A. (2021). Regional Clustering for Developing Electricity Systems in Archipelagic Area: A Case Study of Maluku and Papua Islands, 2021 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), IEEE, 242–247. doi:10.1109/ICT-PEP53949.2021.9601113.
  16. McNeil, M. A., Karali, N., and Letschert, V. (2019). Forecasting Indonesia’s Electricity Load through 2030 and Peak Demand Reductions from Appliance and Lighting Efficiency, Energy for Sustainable Development, Vol. 49, 65–77. doi:10.1016/j.esd.2019.01.001.
  17. Maki, S., Ashina, S., Fujii, M., Fujita, T., Yabe, N., Uchida, K., Ginting, G., Boer, R., and Chandran, R. (2018). Employing Electricity-Consumption Monitoring Systems and Integrative Time-Series Analysis Models: A Case Study in Bogor, Indonesia, Frontiers in Energy, Vol. 12, No. 3, 426–439. doi:10.1007/s11708-018-0560-4.
  18. Tambunan, H. B., Barus, D. H., Hartono, J., Alam, A. S., Nugraha, D. A., and Usman, H. H. H. (2020). Electrical Peak Load Clustering Analysis Using K-Means Algorithm and Silhouette Coefficient, 2020 International Conference on Technology and Policy in Energy and Electric Power (ICT-PEP), IEEE, 258–262. doi:10.1109/ICT-PEP50916.2020.9249773.
  19. Arshad, Z., Robaina, M., and Botelho, A. (2020). The Role of ICT in Energy Consumption and Environment: An Empirical Investigation of Asian Economies with Cluster Analysis, Environmental Science and Pollution Research, Vol. 27, No. 26, 32913–32932. doi:10.1007/s11356-020-09229-7.
  20. Wororomi, J. K., Girik Allo, C. B., and Paranoan, N. R. (2023). Performance of K-Means and DBSCAN Algorithm in Clustering Gross Regional Domestic Product, Journal of International Conference Proceedings, Vol. 6, No. 5, 179–193. doi:10.32535/jicp.v6i5.2710.
  21. Hardi, I., Ray, S., Attari, M. U. Q., Ali, N., and Idroes, G. M. (2024). Innovation and Economic Growth in the Top Five Southeast Asian Economies: A Decomposition Analysis, Ekonomikalia Journal of Economics, Vol. 2, No. 1, 1–14. doi:10.60084/eje.v2i1.145.
  22. Idroes, G. M., Syahnur, S., Majid, S. A., Sasmita, N. R., and Idroes, R. (2021). Provincial economic level analysis in Indonesia based on the geothermal energy potential and growth regional domestic products using cluster analysis, IOP Conference Series: Materials Science and Engineering, Vol. 1087, No. 1, 012079. doi:10.1088/1757-899X/1087/1/012079.
  23. Kurniawan, H., de Groot, H. L. F., and Mulder, P. (2019). Are Poor Provinces Catching-Up the Rich Provinces in Indonesia?, Regional Science Policy & Practice, Vol. 11, No. 1, 89–108. doi:10.1111/rsp3.12160.
  24. Sasmita, N. R., Phonna, R. A., Fikri, M. K., Khairul, M., Apriliansyah, F., Idroes, G. M., Puspitasari, A., and Saputra, F. E. (2023). Statistical Assessment of Human Development Index Variations and Their Correlates: A Case Study of Aceh Province, Indonesia, Grimsa Journal of Business and Economics Studies, Vol. 1, No. 1, 12–24.
  25. Maulidar, P., Fitriyani, F., Sasmita, N. R., Hardi, I., and Idroes, G. M. (2024). Exploring Indonesia’s CO2 Emissions: The Impact of Agriculture, Economic Growth, Capital and Labor, Grimsa Journal of Business and Economics Studies, Vol. 1, No. 1, 43–55. doi:10.61975/gjbes.v1i1.22.
  26. Ahmed, M., Seraj, R., and Islam, S. M. S. (2020). The k-means Algorithm: A Comprehensive Survey and Performance Evaluation, Electronics, Vol. 9, No. 8, 1295. doi:10.3390/electronics9081295.
  27. Sinaga, K. P., and Yang, M.-S. (2020). Unsupervised K-Means Clustering Algorithm, IEEE Access, Vol. 8, 80716–80727. doi:10.1109/ACCESS.2020.2988796.
  28. Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., and Heming, J. (2023). K-Means Clustering Algorithms: A Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data, Information Sciences, Vol. 622, 178–210. doi:10.1016/j.ins.2022.11.139.
  29. Surya, B., Salim, A., Hernita, H., Suriani, S., Menne, F., and Rasyidi, E. S. (2021). Land Use Change, Urban Agglomeration, and Urban Sprawl: A Sustainable Development Perspective of Makassar City, Indonesia, Land, Vol. 10, No. 6, 556. doi:10.3390/land10060556.
  30. Noviandy, T. R., Maulana, A., Sasmita, N. R., Suhendra, R., Muslem, M., Idroes, G. M., Paristiowati, M., Helwani, Z., Yandri, E., Rahimah, S., Muhammad, M., Irvanizam, I., and Idroes, R. (2020). The Implementation of K-Means Clustering in Kovats Retention Index on Gas Chromatography, IOP Conf. Ser.: Mater. Sci. Eng.
  31. Kramer, O. (2016). Scikit-Learn, 45–53. doi:10.1007/978-3-319-33383-0_5.
  32. Arthur, D., and Vassilvitskii, S. (2007). K-means++: The Advantages of Careful Seeding, Soda (Vol. 7), 1027–1035.
  33. Noviandy, T. R., Nainggolan, S. I., Raihan, R., Firmansyah, I., and Idroes, R. (2023). Maternal Health Risk Detection Using Light Gradient Boosting Machine Approach, Infolitika Journal of Data Science, Vol. 1, No. 2, 48–55. doi:10.60084/ijds.v1i2.123.




How to Cite

Noviandy, T. R., Hardi, I., Zahriah, Z., Sofyan, R., Sasmita, N. R., Hilal, I. S., & Idroes, G. M. (2024). Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis. Leuser Journal of Environmental Studies, 2(1), 41–51. https://doi.org/10.60084/ljes.v2i1.181