Optimizing Motorcycle Manufacturing Sustainability through the Integration of Waste Heat Recovery and Metal Scrap Recycling: A Process Engineering Approach
DOI:
https://doi.org/10.60084/ljes.v2i2.225Keywords:
Motorcycle manufacturing, Energy efficiency, Waste heat recovery, Sustainability, Energy consumption reduction, Raw material preheating, Material waste recyclingAbstract
The automotive industry manufacturing has experienced rapid growth 2–3 times by 2050, with motorcycles constituting around 30% of vehicles worldwide, but this increase in production has significantly heightened the demand for raw materials and energy. A major challenge arises in managing material waste and waste heat generated during the manufacturing process. This research aims to develop a framework that optimizes the synergy between material waste recycling and waste heat recovery to enhance the sustainability of the motorcycle industry, reduce waste, and lower energy consumption. The design leverages waste heat from the melting process to preheat raw materials, raising temperatures from around 50 °C to 350 °C before melting, thereby reducing additional energy needs, lowering emissions, and decreasing operational costs. Utilizing waste heat for preheating not only mitigates environmental impact and thermal load but also significantly improves energy efficiency, ultimately resulting in cost savings and optimized resource use. Utilizing waste heat directly for preheating raw materials has effectively lowered energy consumption by as much as 30%. This approach not only improves operational efficiency but also decreases production costs and minimizes environmental impact, offering a more sustainable solution for the manufacturing sector.
Downloads
References
- Cadavid, L., and Salazar-Serna, K. (2021). Mapping the Research Landscape for the Motorcycle Market Policies: Sustainability as a Trend—A Systematic Literature Review, Sustainability, Vol. 13, No. 19, 10813. doi:10.3390/su131910813.
- Haraldsson, J., and Johansson, M. T. (2018). Review of Measures for Improved Energy Efficiency in Production-Related Processes in the Aluminium Industry – from Electrolysis to Recycling, Renewable and Sustainable Energy Reviews, Vol. 93, 525–548. doi:10.1016/j.rser.2018.05.043.
- Liu, W., Peng, T., Kishita, Y., Umeda, Y., Tang, R., Tang, W., and Hu, L. (2021). Critical Life Cycle Inventory for Aluminum Die Casting: A Lightweight-Vehicle Manufacturing Enabling Technology, Applied Energy, Vol. 304, 117814. doi:10.1016/j.apenergy.2021.117814.
- Anastasovski, A., Rasković, P., and Guzović, Z. (2020). A Review of Heat Integration Approaches for Organic Rankine Cycle with Waste Heat in Production Processes, Energy Conversion and Management, Vol. 221, 113175. doi:10.1016/j.enconman.2020.113175.
- Jouhara, H., Khordehgah, N., Almahmoud, S., Delpech, B., Chauhan, A., and Tassou, S. A. (2018). Waste Heat Recovery Technologies and Applications, Thermal Science and Engineering Progress, Vol. 6, 268–289. doi:10.1016/j.tsep.2018.04.017.
- Lodewijk, D. P. Y., Yandri, E., Murdiyansah, N., and Ariati, R. (2024). Cultivating Energy Conscious Communities: The Path to Increased Efficiency, Heca Journal of Applied Sciences, Vol. 2, No. 1, 35–45. doi:10.60084/hjas.v2i1.157.
- Hamja, N., Yandri, E., Hilmi, E., Uhanto, U., and Saiful, R. (2024). Potential for Electrical Energy Savings in AC Systems by Utilizing Exhaust Heat from Outdoor Unit, Heca Journal of Applied Sciences, Vol. 2, No. 2, 64–73. doi:10.60084/hjas.v2i2.223.
- van Ledden, A., Can, M., and Brusselaers, J. (2024). Toward a Greener Future: Investigating the Environmental Quality of Non-Green Trading in OECD Countries, Ekonomikalia Journal of Economics, Vol. 2, Nos. 1 SE-Articles, 15–28. doi:10.60084/eje.v2i1.149.
- Idroes, G. M., Hardi, I., Noviandy, T. R., Sasmita, N. R., Hilal, I. S., Kusumo, F., and Idroes, R. (2023). A Deep Dive into Indonesia’s CO2 Emissions: The Role of Energy Consumption, Economic Growth and Natural Disasters, Ekonomikalia Journal of Economics, Vol. 1, No. 2, 69–81. doi:10.60084/eje.v1i2.115.
- El Boudali, J., Mansouri, K., and Qbadou, M. (2022). Modelling the Design of the Reverse Logistics Network for Metal Waste, 2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET), IEEE, 1–5. doi:10.1109/IRASET52964.2022.9737793.
- Huang, Y.-F., Weng, M.-W., Hoang, T.-T., and Lai, I.-S. (2021). Circular Economy Policy of Bike Industry- Exploring the Optimal ETO Component under Imperfect Production Processes System, 2021 IEEE International Conference on Social Sciences and Intelligent Management (SSIM), IEEE, 1–6. doi:10.1109/SSIM49526.2021.9555214.
- van Hek, S., Can, M., and Brusselaers, J. (2024). The Impact of Non-Green Trade Openness on Environmental Degradation in Newly Industrialized Countries, Ekonomikalia Journal of Economics, Vol. 2, No. 2, 66–81. doi:10.60084/eje.v2i2.148.
- Capuzzi, S., and Timelli, G. (2018). Preparation and Melting of Scrap in Aluminum Recycling: A Review, Metals, Vol. 8, No. 4, 249. doi:10.3390/met8040249.
- Bonilla-Campos, I., Nieto, N., del Portillo-Valdes, L., Egilegor, B., Manzanedo, J., and Gaztañaga, H. (2019). Energy Efficiency Assessment: Process Modelling and Waste Heat Recovery Analysis, Energy Conversion and Management, Vol. 196, 1180–1192. doi:10.1016/j.enconman.2019.06.074.
- Ortega-Fernández, I., and Rodríguez-Aseguinolaza, J. (2019). Thermal Energy Storage for Waste Heat Recovery in the Steelworks: The Case Study of the REslag Project, Applied Energy, Vol. 237, 708–719. doi:10.1016/j.apenergy.2019.01.007.
- Yandri, E., Suherman, S., Lomi, A., Setyobudi, R. H., Ariati, R., Pramudito, P., Ronald, R., Ardiani, Y., Burlakovs, J., Zahoor, M., Shah, L. A., Fauzi, A., Tonda, R., and Iswahyudi, I. (2024). Sustainable Energy Efficiency in Aluminium Parts Industries Utilizing Waste Heat and Equivalent Volume with Energy Management Control System, Proceedings of the Estonian Academy of Sciences, Vol. 73, No. 1, 29–42. doi:10.3176/proc.2024.1.04.
- Yang, F., Yu, Q., Zuo, Z., and Hou, L. (2021). Thermodynamic Analysis of Waste Heat Recovery of Aluminum Dross in Electrolytic Aluminum Industry, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, Vol. 43, No. 9, 1047–1059. doi:10.1080/15567036.2019.1634163.
- Wang, J., Wang, Z., Zhou, D., and Sun, K. (2019). Key Issues and Novel Optimization Approaches of Industrial Waste Heat Recovery in District Heating Systems, Energy, Vol. 188, 116005. doi:10.1016/j.energy.2019.116005.
- Yandri, E., Pramudito, P., Ronald, R., Ardiani, Y., Ariati, R., Setyobudi, R. H., Widodo, W., Zahoor, M., Zekker, I., and Lomi, A. (2022). Technical Design of Aluminium Scrap Processing Machines by Utilizing Direct Exhaust Air Using Conveyor Drying System, Proceedings of the Estonian Academy of Sciences, Vol. 71, No. 2, 178–185. doi:10.3176/proc.2022.2.01.
- Brough, D., and Jouhara, H. (2020). The Aluminium Industry: A Review on State-of-the-Art Technologies, Environmental Impacts and Possibilities for Waste Heat Recovery, International Journal of Thermofluids, Vols 1–2, 100007. doi:10.1016/j.ijft.2019.100007.
- Woolley, E., Luo, Y., and Simeone, A. (2018). Industrial Waste Heat Recovery: A Systematic Approach, Sustainable Energy Technologies and Assessments, Vol. 29, 50–59. doi:10.1016/j.seta.2018.07.001.
- Macedo, C., Freitas, C., Brito, A. M., Santos, G., Faria, L., Laranjeira, J., and Simoes, R. (2019). Influence of Dynamic Temperature Control on the Injection Molding Process of Plastic Components, Procedia Manufacturing, Vol. 38, 1338–1346. doi:10.1016/j.promfg.2020.01.155.
- Su, Z., Zhang, M., Xu, P., Zhao, Z., Wang, Z., Huang, H., and Ouyang, T. (2021). Opportunities and Strategies for Multigrade Waste Heat Utilization in Various Industries: A Recent Review, Energy Conversion and Management, Vol. 229, No. August 2020, 113769. doi:10.1016/j.enconman.2020.113769.
- Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U., and Micale, G. (2018). Industrial Waste Heat: Estimation of the Technically Available Resource in the EU per Industrial Sector, Temperature Level and Country, Applied Thermal Engineering, Vol. 138, 207–216. doi:10.1016/j.applthermaleng.2018.04.043.
- Dokl, M., Gomilšek, R., Čuček, L., Abikoye, B., and Kravanja, Z. (2022). Maximizing the Power Output and Net Present Value of Organic Rankine Cycle: Application to Aluminium Industry, Energy, Vol. 239, 122620. doi:10.1016/j.energy.2021.122620.
- Salonitis, K., Jolly, M., Pagone, E., and Papanikolaou, M. (2019). Life-Cycle and Energy Assessment of Automotive Component Manufacturing: The Dilemma Between Aluminum and Cast Iron, Energies, Vol. 12, No. 13, 2557. doi:10.3390/en12132557.
- Liu, Y., and Xiong, S. (2024). Research Progress on Thermal Conductivity of High-Pressure Die-Cast Aluminum Alloys, Metals, Vol. 14, No. 4, 370. doi:10.3390/met14040370.
- Haraldsson, J., Johnsson, S., Thollander, P., and Wallén, M. (2021). Taxonomy, Saving Potentials and Key Performance Indicators for Energy End-Use and Greenhouse Gas Emissions in the Aluminium Industry and Aluminium Casting Foundries, Energies, Vol. 14, No. 12, 3571. doi:10.3390/en14123571.
- Oyedepo, S. O., and Fakeye, B. A. (2021). Waste Heat Recovery Technologies: Pathway to Sustainable Energy Development, Journal of Thermal Engineering, Vol. 7, No. 1, 324–348. doi:10.18186/thermal.850796.
- Wazeer, A., Das, A., Abeykoon, C., Sinha, A., and Karmakar, A. (2023). Composites for Electric Vehicles and Automotive Sector: A Review, Green Energy and Intelligent Transportation, Vol. 2, No. 1, 100043. doi:10.1016/j.geits.2022.100043.
- Wu, W., Du, Y., Qian, H., Fan, H., Jiang, Z., Zhang, X., and Huang, S. (2024). Enhancing the Waste Heat Utilization of Industrial Park: A Heat Pump-Centric Network Integration Approach for Multiple Heat Sources and Users, Energy Conversion and Management, Vol. 306, 118306. doi:10.1016/j.enconman.2024.118306.
- Thompson, A., and Taylor, B. N. (2008). Use of the International System of Units (SI), NIST Special Publication, Gaithersburg.
- Dhiman, B., and Bhatia, O. S. (2015). Oil Fired Furnace and Induction Furnace: A Review, International Journal of Scientific & Engineering Research, Vol. 6, No. 8, 602–613.
- Díaz-Romero, D., Sterkens, W., Van den Eynde, S., Goedemé, T., Dewulf, W., and Peeters, J. (2021). Deep Learning Computer Vision for the Separation of Cast- and Wrought-Aluminum Scrap, Resources, Conservation and Recycling, Vol. 172, 105685. doi:10.1016/j.resconrec.2021.105685.
- Chowdhury, J. I., Hu, Y., Haltas, I., Balta-Ozkan, N., Matthew, G. J., and Varga, L. (2018). Reducing Industrial Energy Demand in the UK: A Review of Energy Efficiency Technologies and Energy Saving Potential in Selected Sectors, Renewable and Sustainable Energy Reviews, Vol. 94, 1153–1178. doi:10.1016/j.rser.2018.06.040.
- Xu, Z. Y., Wang, R. Z., and Yang, C. (2019). Perspectives for Low-Temperature Waste Heat Recovery, Energy, Vol. 176, 1037–1043. doi:10.1016/j.energy.2019.04.001.
- Meng, Y., Yang, Y., Chung, H., Lee, P.-H., and Shao, C. (2018). Enhancing Sustainability and Energy Efficiency in Smart Factories: A Review, Sustainability, Vol. 10, No. 12, 4779. doi:10.3390/su10124779.
- Elsaid, K., Taha Sayed, E., Yousef, B. A. A., Kamal Hussien Rabaia, M., Ali Abdelkareem, M., and Olabi, A. G. (2020). Recent Progress on the Utilization of Waste Heat for Desalination: A Review, Energy Conversion and Management, Vol. 221, 113105. doi:10.1016/j.enconman.2020.113105.
- Yang, J., Zhang, Z., Yang, L., Hong, M., Bie, Y., Xu, T., and Chen, J. (2023). Coupling Effect between Waste Heat Recovery and Government Subsidy with Supply Chain as a Pivot, Sustainable Cities and Society, Vol. 99, 104897. doi:10.1016/j.scs.2023.104897.
- Christodoulides, P., Aresti, L., Panayiotou, G. P., Tassou, S., and Florides, G. A. (2022). Adoption of Waste Heat Recovery Technologies: Reviewing the Relevant Barriers and Recommendations on How to Overcome Them, Operations Research Forum, Vol. 3, No. 1, 3. doi:10.1007/s43069-021-00108-6.
- Uhanto, U., Yandri, E., Hilmi, E., Saiful, R., and Hamja, N. (2024). Predictive Maintenance with Machine Learning: A Comparative Analysis of Wind Turbines and PV Power Plants, Heca Journal of Applied Sciences, Vol. 2, No. 2, 87–98. doi:10.60084/hjas.v2i2.219.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rifki Saiful, Erkata Yandri, Erik Hilmi, Nasrullah Hamja, Uhanto Uhanto, Fitriani Fitriani, Riki Firmandha Ibrahim
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.