Sustainable and Environment-Friendly Management of Shrimp Processing Waste through High-Quality Chitosan Production

Authors

  • Zulkarnain Zulkarnain Science and Technology Department, Universitas Islam Negeri Fatmawati Sukarno, Bengkulu, Indonesia
  • Wiji Aziiz Hari Mukti Science and Technology Department, Universitas Islam Negeri Fatmawati Sukarno, Bengkulu, Indonesia
  • Kurniawan Kurniawan Science and Technology Department, Universitas Islam Negeri Fatmawati Sukarno, Bengkulu, Indonesia

DOI:

https://doi.org/10.60084/ljes.v2i2.229

Keywords:

Waste , Shrimp, Environmental, Chitosan

Abstract

The shrimp processing industry generates substantial waste, including shells, heads, and tails, which, if not properly managed, can contribute to significant environmental issues, such as pollution and disease transmission. This study explores the conversion of shrimp waste into chitosan, a valuable biopolymer with applications across multiple industries, by utilizing its chitin, protein, and mineral content. The extraction process involved demineralization with 1M HCl, deproteinization with 3.5% NaOH, and deacetylation with 60% NaOH. The resulting chitosan exhibited high quality, characterized by a crystal structure, white color, odorless powder form, 73.7% degree of deacetylation (DD), 64% yield, solubility in acetic acid, and water content of 1.5%. This research highlights an environmentally responsible approach to shrimp waste management, providing a method for repurposing waste into a high-value material that meets industry standards, supporting environmental sustainability and circular economy practices.

Downloads

Download data is not yet available.

References

  1. BPS. (2022). Aquaculture Production According to Main Commodities.
  2. Bosman, O., Soesilo, T. E. B., and Rahardjo, S. (2021). Pollution Index and Economic Value of Vannamei Shrimp (Litopenaeus vannamei) Farming in Indonesia, Indonesian Aquaculture Journal, Vol. 16, No. 1. doi:10.15578/IAJ.16.1.2021.51-60.
  3. Cardoso-Mohedano, J. G., Páez-Osuna, F., Amezcua-Martínez, F., Ruiz-Fernández, A. C., Ramírez-Reséndiz, G., and Sanchez-Cabeza, J. A. (2016). Combined Environmental Stress from Shrimp Farm and Dredging Releases in a Subtropical Coastal Lagoon (SE Gulf of California), Marine Pollution Bulletin, Vol. 104, Nos. 1–2. doi:10.1016/j.marpolbul.2016.02.008.
  4. Mendoza, O., Pretell, K., Ramírez, B., Sandoval, J., Caballero, J. L., and Dorado, G. (2021). Metagenomic Analyses of Biofilms on Whiteleg Shrimp (Litopenaeus vannamei) Effluents: Implications for Worldwide Aquaculture Bioremediation and Environmental Sustainability in the Current Trend of Climate Change and Global Warming–State of the Art and Exp, Reviews in Fisheries Science and Aquaculture, Vol. 29, No. 4. doi:10.1080/23308249.2020.1820720.
  5. Duan, C., Meng, X., Meng, J., Khan, M. I. H., Dai, L., Khan, A., An, X., Zhang, J., Huq, T., and Ni, Y. (2019). Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties, Journal of Bioresources and Bioproducts. doi:10.21967/jbb.v4i1.189.
  6. Riofrio, A., Alcivar, T., and Baykara, H. (2021). Environmental and Economic Viability of Chitosan Production in Guayas-Ecuador: A Robust Investment and Life Cycle Analysis, ACS Omega. doi:10.1021/acsomega.1c01672.
  7. Tamer, T. M., Hassan, M. A., Omer, A. M., Valachová, K., Eldin, M. S. M., Collins, M. N., and Šoltés, L. (2017). Antibacterial and Antioxidative Activity of O-Amine Functionalized Chitosan, Carbohydrate Polymers, Vol. 169. doi:10.1016/j.carbpol.2017.04.027.
  8. Torkaman, S., Rahmani, H., Ashori, A., and Najafi, S. H. M. (2021). Modification of Chitosan Using Amino Acids for Wound Healing Purposes: A Review, Carbohydrate Polymers. doi:10.1016/j.carbpol.2021.117675.
  9. Harmsen, R. A. G., Tuveng, T. R., Antonsen, S. G., Eijsink, V. G. H., and Sørlie, M. (2019). Can We Make Chitosan by Enzymatic Deacetylation of Chitin?, Molecules, Vol. 24, No. 21. doi:10.3390/molecules24213862.
  10. Aguilar, A., Zein, N., Harmouch, E., Hafdi, B., Bornert, F., Offner, D., Clauss, F., Fioretti, F., Huck, O., Benkirane-Jessel, N., and Hua, G. (2019). Application of Chitosan in Bone and Dental Engineering, Molecules. doi:10.3390/molecules24163009.
  11. Khastini, R. O., Munandar, A., and Sari, I. J. (2019). Chitosan Synthesis and Optimization of Root Endophytic Fungi, Biota, Vol. 12, No. 2. doi:10.20414/jb.v12i2.220.
  12. Wang, W., Meng, Q., Li, Q., Liu, J., Zhou, M., Jin, Z., and Zhao, K. (2020). Chitosan Derivatives and Their Application in Biomedicine, International Journal of Molecular Sciences. doi:10.3390/ijms21020487.
  13. Satitsri, S., and Muanprasat, C. (2020). Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications, Molecules. doi:10.3390/MOLECULES25245961.
  14. Jantzen da Silva Lucas, A., Quadro Oreste, E., Leão Gouveia Costa, H., Martín López, H., Dias Medeiros Saad, C., and Prentice, C. (2021). Extraction, Physicochemical Characterization, and Morphological Properties of Chitin and Chitosan from Cuticles of Edible Insects, Food Chemistry, Vol. 343. doi:10.1016/j.foodchem.2020.128550.
  15. Agarwal, M., Agarwal, M. K., Shrivastav, N., Pandey, S., and Gaur, P. (2018). A Simple and Effective Method for Preparation of Chitosan from Chitin, International Journal of Life-Sciences Scientific Research, Vol. 4, No. 2. doi:10.21276/ijlssr.2018.4.2.18.
  16. Ta, Q., Ting, J., Harwood, S., Browning, N., Simm, A., Ross, K., Olier, I., and Al-Kassas, R. (2021). Chitosan Nanoparticles for Enhancing Drugs and Cosmetic Components Penetration through the Skin, European Journal of Pharmaceutical Sciences, Vol. 160. doi:10.1016/j.ejps.2021.105765.
  17. Aranaz, I., Acosta, N., Civera, C., Elorza, B., Mingo, J., Castro, C., Gandía, M. de los L., and Caballero, A. H. (2018). Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives, Polymers. doi:10.3390/polym10020213.
  18. Zulkarnain, Kurniawan, F., Ersam, T., and Suprapto. (2016). Influence of Ni(OH)2 Nanoparticles on Insulin Sensor Sensitivity, ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 11, 6721–6725.
  19. Zulkarnain, Suprapto, Ersam, T., and Kurniawan, F. (2016). A Novel Selective and Sensitive Electrochemical Sensor for Insulin Detection, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 3, No. 3, 496–502. doi:10.11591/ijeecs.v3.i2.pp496-502.
  20. Rizeq, B. R., Younes, N. N., Rasool, K., and Nasrallah, G. K. (2019). Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles, International Journal of Molecular Sciences. doi:10.3390/ijms20225776.
  21. Sun, Y., Zhou, S., Pan, S. Y., Zhu, S., Yu, Y., and Zheng, H. (2020). Performance Evaluation and Optimization of Flocculation Process for Removing Heavy Metal, Chemical Engineering Journal, Vol. 385. doi:10.1016/j.cej.2019.123911.
  22. Zeng, D., Wu, J., and Kennedy, J. F. (2008). Application of a Chitosan Flocculant to Water Treatment, Carbohydrate Polymers, Vol. 71, No. 1. doi:10.1016/j.carbpol.2007.07.039.
  23. Sullivan, D. J., Cruz-Romero, M., Collins, T., Cummins, E., Kerry, J. P., and Morris, M. A. (2018). Synthesis of Monodisperse Chitosan Nanoparticles, Food Hydrocolloids, Vol. 83. doi:10.1016/j.foodhyd.2018.05.010.
  24. Pan, H., Zhao, T., Xu, L., Shen, Y., Wang, L., and Ding, Y. (2020). Preparation of Novel Chitosan Derivatives and Applications in Functional Finishing of Textiles, International Journal of Biological Macromolecules, Vol. 153. doi:10.1016/j.ijbiomac.2019.10.226.
  25. Pokhrel, S., Shah, S., and Adhikari, H. S. (2021). Synthesis and Characterization of Chitosan from Prawn Shells and Study of Its Effects on Weight Loss of Myrica esculenta Fruits, Asian Journal of Chemistry, Vol. 33, No. 2. doi:10.14233/ajchem.2021.22980.
  26. Verma, D. K., Malik, R., Meena, J., and Rameshwari, R. (2021). Synthesis, Characterization and Applications of Chitosan Based Metallic Nanoparticles: A Review, Journal of Applied and Natural Science, Vol. 13, No. 2. doi:10.31018/jans.v13i2.2635.
  27. Ernawati, P. (2008). Transformation of Chitin into Chitosan from Shrimp Shell and Crab Shell Waste and Its Application as an Antibacterial Biomaterial and Its Potential as an Anticancer, Skripsi. Jimbaran: Universitas Udayana.
  28. Sinaga, P. A. K. (2009). Chitosan Based Adhesive for Insulation Boards, IPB (Bogor Agricultural University).
  29. Takarina, N. D., Nasrul, A. A., and Nurmarina, A. (2017). Degree of Deacetylation of Chitosan Extracted from White Snapper (Lates sp.) Scales Waste, International Journal of Pharma Medicine and Biological Sciences, Vol. 6, No. 1, 16–19. doi:10.18178/ijpmbs.6.1.16-19.

Downloads

Published

2024-10-29

How to Cite

Zulkarnain, Z., Mukti, W. A. H., & Kurniawan, K. (2024). Sustainable and Environment-Friendly Management of Shrimp Processing Waste through High-Quality Chitosan Production. Leuser Journal of Environmental Studies, 2(2), 95–100. https://doi.org/10.60084/ljes.v2i2.229