Optimizing Potential Supply Chain of Biomass Agricultural Waste for Co-firing of Coal Power Plant Using MCDA, GIS, and Linear Programming in the Java and Sumatra Islands, Indonesia
DOI:
https://doi.org/10.60084/ljes.v3i1.249Keywords:
Agricultural waste biomass, Potential mapping, Supply chain modeling , Coal-fired power plant co-firing, Multi-regional analysis , Linear programmingAbstract
The development of renewable energy is a key priority for the Indonesian government and many other nations. Utilizing biomass as a co-firing fuel in coal-fired power plants (PLTUs) offers a viable pathway to meet renewable energy targets in the electricity sector. Co-firing technology involves substituting coal with biomass at specific ratios while maintaining the operational quality and efficiency of the power plants. Indonesia plans to implement a co-firing program in 114 PLTUs, with a combined capacity of 18.1 GW, requiring approximately 9 million tons of biomass annually. This study aims to develop a biomass supply chain model for co-firing, focusing on transportation cost optimization. Geographic Information Systems (GIS), Multi-Criteria Decision Analysis (MCDA), and Linear Programming are employed to map biomass potential from agricultural waste, identify optimal storage and factory locations, calculate the shortest distances to PLTUs, and design an efficient supply chain. Key biomass sources considered include agricultural waste from rice, corn, cassava, palm oil, coconut, sugarcane, and rubber. The study concentrates on co-firing in the Java and Sumatra regions, which house 14 and 12 PLTUs, respectively. Assuming a 5% biomass mix, the total annual bio-pellet demand is estimated at 3.34 million tons. By contrast, the annual production capacity of bio-pellets is calculated to be 143.58 million tons, indicating a surplus supply. Optimization results confirm that the available biomass supply can adequately meet the co-firing requirements for PLTUs in Java and Sumatra. The study also identifies optimal locations for storage facilities and bio-pellet factories near PLTU sites, enhancing supply chain efficiency. By integrating data on biomass potential, storage, factory, and PLTU locations, this research facilitates the design of an effective and efficient biomass supply chain, contributing to the broader goal of renewable energy development.
Downloads
References
- Ahmudi, A., Garniwa, I., Hudaya, C., Nur, S. M., and Sugiyono, A. (2024). Mapping the Potential Supply Chain of Palm Oil Waste Biopellets for Co-Firing Coal Power Plants in the Northern Sumatra Region , Indonesia, 1–16.
- RSPO. (2012). Roundtable on Sustainable Palm Oil - Factsheet, 1–4.
- Whittaker, C., and Shield, I. (2017). Biomass Harvesting, Processing, Storage, and Transport, Greenhouse Gas Balances of Bioenergy Systems, Elsevier Inc. doi:10.1016/B978-0-08-101036-5.00007-0.
- Sugiyono, A., Rahardjo, I., Wijaya, P. T., Dwijatmiko, A., Aminuddin, Siregar, E., Fithri, S. R., Niode, N., and Fitriana, I. (2024). Transitioning from Coal to Solar: A Cost-Benefit Analysis for Sustainable Power Generation in Indonesia, AIMS Energy, Vol. 12, No. 1, 152–166. doi:10.3934/energy.2024007.
- BPS Indonesia, S. I. (2023). Catalog : 1101001, Statistik Indonesia 2023, Vol. 1101001, 790.
- Resosudarmo, B. P., Jotzo, F., Yusuf, A. A., and Nurdianto, D. A. (2011). Challenges in Mitigating Indonesia’s CO2 Emission: The Importance of Managing Fossil Fuel Combustion.
- Sotnyk, I., Kurbatova, T., Romaniuk, Y., Prokopenko, O., Gonchar, V., Sayenko, Y., Prause, G., and Sapiński, A. (2022). Determining the Optimal Directions of Investment in Regional Renewable Energy Development, Energies, Vol. 15, No. 10, 1–26. doi:10.3390/en15103646.
- Pambudi, N. A., Firdaus, R. A., Rizkiana, R., Ulfa, D. K., Salsabila, M. S., Suharno, and Sukatiman. (2023). Renewable Energy in Indonesia: Current Status, Potential, and Future Development, Sustainability, Vol. 15, No. 3, 2342. doi:10.3390/su15032342.
- Welfle, A., Gilbert, P., and Thornley, P. (2014). Securing a Bioenergy Future without Imports, Energy Policy, Vol. 68, No. 2014, 1–14. doi:10.1016/j.enpol.2013.11.079.
- PT PLN (Persero). (2010). Electricity Power Supply Business Plan 2010 - 2019, PT.PLN (Persero), 1006.
- Hasan, M. H., Mahlia, T. M. I., and Nur, H. (2012). A Review on Energy Scenario and Sustainable Energy in Indonesia, Renewable and Sustainable Energy Reviews, Vol. 16, No. 4, 2316–2328. doi:10.1016/j.rser.2011.12.007.
- Hariana, H., Prida Putra, H., Lutfi, M., and Prismantoko, A. (2022). Operation Strategy of a Hybrid Solar and Biomass Power Plant in the Electricity Markets, Advances in Food Science, Sustainable Agriculture and Agroindustrial Engineering, Vol. 5, No. 1, 95–101. doi:10.21776/ub.afssaae.2022.005.01.8.
- Ahmudi, A., Garniwa, I., Hudaya, C., Nur, S. M., and Sugiyono, A. (2024). Multi-regional Analysis of Biomass Agriculture Waste Potential and Bio-Pellet Development for Electricity in Indonesia, AIP Conference Proceedings, Vol. 3080, No. 1. doi:10.1063/5.0203364.
- Camacho, Y. M. C., Davila, K. J. E., Flores, Y. A. V., and Del Rosario, J. A. D. (2022). Linear Programming Model for the Optimization of the Biodiesel Supply Chain in the Mindanao Island of the Philippines, ASEAN Engineering Journal, Vol. 12, No. 1, 1–7. doi:10.11113/aej.V12.16498.
- Syahbana Rusli, M. (2022). Pengembangan Ekosistem Biomasa untuk Security of Supply Program Cofiring PLTU Dalam Rangka Peningkatan Bauran EBT Nasional.
- Sun, Y., Wang, R., Li, J., and Liu, J. (2017). GIS-Based Multiregional Potential Evaluation and Strategies Selection Framework for Various Renewable Energy Sources: A Case Study of Eastern Coastal Regions of China, Energy Science and Engineering, Vol. 5, No. 3, 123–140. doi:10.1002/ese3.160.
- FAO, F. and A. O., and UNEP, U. N. E. P. (2010). A Decision Support Tool for Sustainable Bioenergy, Energy.
- Terh, S. H., and Cao, K. (2018). GIS-MCDA based cycling paths planning: a case study in Singapore, Applied Geography, Vol. 94, No. April, 107–118. doi:10.1016/j.apgeog.2018.03.007.
- Wang, Y., Lou, S., Wu, Y., Miao, M., and Wang, S. (2019). Operation Strategy of a Hybrid Solar and Biomass Power Plant in the Electricity Markets, Electric Power Systems Research, Vol. 167, No. April 2018, 183–191. doi:10.1016/j.epsr.2018.10.035.
- Shayan, M. E. (2021). The Biomass Supply Chain Network Auto-Regressive Moving Average Algorithm, International Journal of Smart Grid, Vol. 5, No. 1. doi:10.20508/ijsmartgrid.v5i1.153.g135.
- Guo, S., and Shen, G. Q. (2015). Multiregional Input-Output Model for China’s Farm Land and Water Use, Environmental Science and Technology, 403–414. doi:10.1021/es503637f.
- Yokoyama, S. (2008). Buku Panduan Biomassa Asia: Panduan untuk Produksi dan Pemanfaatan Biomassa., The Japan Institute of Energy.
- Karimi Alavijeh, M., and Yaghmaei, S. (2016). Biochemical Production of Bioenergy from Agricultural Crops and Residue in Iran, Waste Management, Vol. 52, 375–394. doi:10.1016/j.wasman.2016.03.025.
- Kos Grabar Robina, V., and Kinderman Lončarević, A. (2017). Implementation of the New Statistics Approach on Final Energy Consumption of Biomass in Household Sector in Three Countries: Croatia, Bosnia and Herzegovina and Macedonia, Energy Conversion and Management, Vol. 149, 1010–1018. doi:10.1016/j.enconman.2017.04.100.
- Helwani, Z., Amraini, S. Z., Asmura, J., Othman, M. R., Peliciamanuela, S., and Anggriani, R. D. (2024). Eco-Friendly Approach to Palm Oil Biodiesel Production: Torrefied Palm Frond Carbon as a Source for CaO/C/NaOH Catalysts, Leuser Journal of Environmental Studies, Vol. 2, No. 1, 12–18. doi:10.60084/ljes.v2i1.171.
- Amraini, S. Z., Nazaris, N. N., Andrio, D., Mardhiansyah, M., and Helwani, Z. (2023). Utilization of Empty Palm Fruit Bunches as a Carbon Source for Cellulase Production to Reduce Solid Waste from Palm Oil, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 34–38. doi:10.60084/ljes.v1i1.41.
- Purwanto, W. W., Supramono, D., Widodo, *, Purwanto, W., Nugroho, Y. S., Dwi, ; *, and Lestari, E. (2009). Characteristics of Biomass Pellet as Fuel, International Seminar on Sustainable Biomass and Utilization Challenges and Opportunities (ISOMAS), No. August, 348–362.
- Purwanto, W. W., and Supramono, D. (2016). Biomass Waste and Biomass Pellets Characteristics and Their Potential in Indonesia Biomass Waste and Biomass Pellets Characteristics and Their Potential in Indonesia, No. July.
- Truong, N. Le, and Gustavsson, L. (2013). Integrated Biomass-Based Production of District Heat, Electricity, Motor Fuels and Pellets of Different Scales, Applied Energy, Vol. 104, 623–632. doi:10.1016/j.apenergy.2012.11.041.
- Aramrueang, N., Zicari, S. M., and Zhang, R. (2017). Characterization and Compositional Analysis of Agricultural Crops and Residues for Ethanol Production in California, Biomass and Bioenergy, Vol. 105, 288–297. doi:10.1016/j.biombioe.2017.07.013.
- IEA ETSAP, and IRENA. (2015). Renewable Energy Integration in Power Grids. Technology Brief, No. April, 1–36.
- Viana, H., Cohen, W. B., Lopes, D., and Aranha, J. (2010). Assessment of Forest Biomass for Use As Energy. GIS-Based Analysis of Geographical Availability and Locations of Wood-Fired Power Plants in Portugal, Applied Energy, Vol. 87, No. 8, 2551–2560. doi:10.1016/j.apenergy.2010.02.007.
- Singh, J., Panesar, B. S., and Sharma, S. K. (2011). Geographical Distribution of Agricultural Residues and Optimum Sites of Biomass Based Power Plant in Bathinda, Punjab, Biomass and Bioenergy, Vol. 35, No. 10, 4455–4460. doi:10.1016/j.biombioe.2011.09.004.
- IRENA. (2015). Renewable Energy Capacity Statistics 2015, Irena, Vol. 75, 44.
- Estoque, R. C. (2011). GIS-Based Multi-Criteria Decision Analysis (in Natural Resource Management), Division of Spatial Information Science, 1–24.
- Kim, J.-W., and Kim, J. (2021). Spatial Multicriteria Decision Analysis: A Powerful Tool for Participatory Decision-Making in Community-Based Tourism Research, Journal of Smart Tourism, Vol. 1, No. 4, 3–7.
- Pln, T. (2021). Progress & Rencana Implementasi Cofiring RDF/SRF PLTU.
- PLN. (2021). Rencana Usaha Penyediaan Tenaga Listrik (RUPTL) PT PLN (Persero) 2021-2030., Rencana Usaha Penyediaan Tenaga Listrik 2021-2030, 2019–2028.
- RUPTL. (2019). Rencana Usaha Penyediaan Tenaga Listrik, Rencana Usaha Penyediaan Tenaga Listrik, 2019–2028.
- Pengadaan Strategis, D., and Pln, P. (2020). Disampaikan Pada FGD Cofiring PLTU Batu Bara BKF.
- Permen ESDM No 1 Tahun 2020. (2020). Peraturan Menteri Energi Dan Sumber Daya Mineral Republik Indonesia, Kemen-Esdm, Vol. 151, No. 2, 10–17.
- Cao, T., Wang, S., and Chen, B. (2018). The Energy-Water Nexus in Interregional Economic Trade from Both Consumption and Production Perspectives, Energy Procedia, Vol. 152, 281–286. doi:10.1016/j.egypro.2018.09.124.
- Deliveree. (2023). Cek Ongkir Cargo Tarif Truk, No. Terkini, 1–5.
- Logisticbid. (2023). Cek Ongkir Semua Ekspedisi Truk AngkutBarang, No. New, 4–7.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ali Ahmudi, Chairul Hudaya, Iwa Garniwa, Said Zul Amraini, Agus Sugiyono, Jarot Mulyo Semedi, M. Ahsin Sidqi, Andini Dwi Khairunnisa Daulay, Syefiara Hania Yumnaristya

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















