Sustainable Energy Integration in Geothermal Exploration: Conceptual Design and Innovation
DOI:
https://doi.org/10.60084/ljes.v3i1.282Keywords:
Hybrid systems, Decarbonization, Energy transition, Off-grid energy solution, Sustainable drillingAbstract
Geothermal drilling operations in remote areas are commonly powered by diesel generators, leading to high fuel consumption and substantial carbon emissions. This study explores the integration of a hybrid solar PV–diesel generator system to enhance energy sustainability at a geothermal drilling base camp in Indonesia. The system design considers local renewable energy potential and incorporates integration with existing equipment. The integration strategy is evaluated through a feasibility analysis considering system efficiency, energy yield, and environmental impact. Using Helioscope software for solar simulation and load analysis based on equipment specifications, the results show that the PV system can supply up to 35% of the daytime energy demand, reducing daily carbon emissions by 8% and enhancing generator performance through optimized load sharing. Despite the absence of battery storage, the system demonstrates significant environmental and operational benefits, while also highlighting the potential for further improvements through energy storage integration, smart control systems, and targeted energy management.
Downloads
References
- Lu, Y., Khan, Z. A., Alvarez-Alvarado, M. S., Zhang, Y., Huang, Z., and Imran, M. (2020). A Critical Review of Sustainable Energy Policies for the Promotion of Renewable Energy Sources, Sustainability, Vol. 12, No. 12, 5078. doi:10.3390/su12125078.
- Alam, M. S., Dinçer, H., Kisswani, K. M., Khan, M. A. I., Yüksel, S., and Alsharif, M. (2024). Analysis of green energy-oriented sustainable development goals for emerging economies, Journal of Open Innovation: Technology, Market, and Complexity, Vol. 10, No. 3, 100368. doi:10.1016/j.joitmc.2024.100368.
- Murphy, R. (2024). What is undermining climate change mitigation? How fossil-fuelled practices challenge low-carbon transitions, Energy Research & Social Science, Vol. 108, 103390. doi:10.1016/j.erss.2023.103390.
- Novianto, B., Abdullah, K., Uyun, A. S., and Yandri, E. (2020). Smart Micro-Grid Performance using Renewable Energy, Vol. 00005, 1–11.
- Yandri, E., Pramono, K. P., Sihombing, V., Effendi, L. H., Ardianto, D., Setyobudi, R. H., Suherman, S., Wahono, S. K., Wibowo, H., Garfansa, M. P., and Farzana, A. R. (2024). Recent Research Progress on Sustainable Energy Management System Based on Energy Efficiency and Renewable Energy, BIO Web of Conferences, Vol. 104. doi:10.1051/bioconf/202410400012.
- Yandri, E., Ariati, R., Uyun, A. S., Setyobudi, R. H., Anne, O., Susanto, H., and Vincevica-Gaile, Z. (2020). Implementation of Walk-Through Audits for Designing Energy Management System: A First Step towards an Efficient Campus, IOP Conference Series: Earth and Environmental Science, Vol. 490, No. 1, 012005. doi:10.1088/1755-1315/490/1/012005.
- Adiansyaha, J. S., Biswasb, W., and Haquec, N. (2021). Life cycle based carbon footprint assessment of Indonesia’s geothermal energy exploration project, Chemical Engineering Transactions, Vol. 83.
- Halim, A., Fudholi, A., Sopian, K., and Phillips, S. J. (2021). Performance of Hybrid Solar Photovoltaic–Diesel Generator and Battery Storage Design for Rural Electrification in Malaysia, International Journal of Sustainable Development and Planning, Vol. 16, No. 5, 883–893. doi:10.18280/ijsdp.160509.
- Harmen, M., Julai, N., Othman, A. K., Aznan, H., and Kulanthaivel, G. (2020). Techno-economic Analysis of a Stand-alone Photovoltaic-Diesel Hybrid System for Rural Area in Sarawak, International Journal of Integrated Engineering, Vol. 12, No. 6. doi:10.30880/ijie.2020.12.06.016.
- Brahim, B. (2019). Performance investigation of a hybrid PV-diesel power system for remote areas, International Journal of Energy Research, Vol. 43, No. 2, 1019–1031. doi:10.1002/er.4301.
- Hilmi, E., Yandri, E., Uhanto, U., Saiful, R., and Hamja, N. (2024). Hybrid Energy Solutions for Sustainable Offshore Oil and Gas Operations: Leveraging Thermoelectric, Solar, and Wind Potential, Leuser Journal of Environmental Studies, Vol. 2, No. 2, 52–61. doi:10.60084/ljes.v2i2.218.
- Trina Solar. (2023). Backsheet Monocrystalline Module.
- Kohler. (2022). Diesel Generator 20 kVA.
- Morales, F., García-Torres, M., Velázquez, G., Daumas-Ladouce, F., Gardel-Sotomayor, P. E., Gómez-Vela, F., Divina, F., Vázquez Noguera, J. L., Sauer Ayala, C., Pinto-Roa, D. P., Mello-Román, J.C., and Becerra-Alonso, D. (2022). Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study, Electronics, Vol. 11, No. 2, 267. doi:10.3390/electronics11020267.
- Oh, S., and Gardner, J. F. (2022). Energy Consumption Analysis Using Measured Data from a Net-Zero Energy Commercial Building in a Cold and Dry Climate, Sustainability, Vol. 14, No. 16, 10346. doi:10.3390/su141610346.
- Govindarajan, L., Mohideen Batcha, M. F., Abdullah, M. K., Md Seri, S., and Taweekun, J. (2024). Analysing the Performance of Large-Scale Rooftop Solar PV System Using Helioscope, PVsyst and PV*SOL Photovoltaic Simulation Software: As a Renewable Energy Strategy, Journal of Advanced Research in Applied Sciences and Engineering Technology, Vol. 52, No. 1, 192–208. doi:10.37934/araset.52.1.192208.
- Arnoos, H., Kamel, S., Jurado, F., and Yaqoob, S. J. (2024). Optimizing Photovoltaic Systems in Building Applications: Environmental and Economic Benefits with Helioscope and HOMER Pro Analysis, 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET, IEEE, 1–6. doi:10.1109/ICECET61485.2024.10698227.
- Govindarajan, L., Batcha, M. F. M., Kamil, S. M. S. M., and Abdullah, J. T. (n.d.). Analysing the Performance of Large-Scale Rooftop Solar PV System Using Heliscope, PVsyst and PV* SOL Photovoltaic Simulation Software: As a Renewable Energy Strategy, Journal of Advanced Research in Applied Sciences and Engineering Technology, Vol. 52, No. 1.
- Kumar, G., and Babu, C. A. (2019). Customized operation of Solar–Variable Speed Diesel Generator hybrid system for remote power applications, International Journal of Recent Technology and Engineering, Vol. 7, No. 6.
- Babajide, A., and Brito, M. C. (2021). Solar PV systems to eliminate or reduce the use of diesel generators at no additional cost: A case study of Lagos, Nigeria, Renewable Energy, Vol. 172, 209–218. doi:10.1016/j.renene.2021.02.088.
- Salau, A. O., Maitra, S. K., Kumar, A., Mane, A., and Dumicho, R. W. (2024). Design, modeling, and simulation of a PV/diesel/battery hybrid energy system for an off-grid hospital in Ethiopia, E-Prime - Advances in Electrical Engineering, Electronics and Energy, Vol. 8, 100607. doi:10.1016/j.prime.2024.100607.
- Rice, I. K., Zhu, H., Zhang, C., and Tapa, A. R. (2023). A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study, Sustainability, Vol. 15, No. 10, 8162. doi:10.3390/su15108162.
- Anantwar, H., and Sunda, S. (2023). Intelligent Optimized Voltage Control for Hybrid Off-Grid Power Systems, Journal of Asian Energy Studies, Vol. 7, 39–47. doi:10.24112/jaes.070003.
- Chandrasekaran, K., Sahayam, J. J., Thanasingh, S. J. S. D., Ramalingam, S., Fayek, H. H., Ravichandran, N., and Rusu, E. (2021). Performance of Multifunctional Smart PV-Based Domestic Distributed Generator in Dual-Mode Operation, Machines, Vol. 9, No. 12, 356. doi:10.3390/machines9120356.
- Satria, H., Syafii, S., and Aswardi, A. (2021). Analysis of Peak Power Capacity on Rooftop Solar PV 1.25 kWp at Sun Conditions 90 Degrees, International Journal of Electrical, Energy and Power System Engineering, Vol. 4, No. 3, 173–178. doi:10.31258/ijeepse.4.3.173-178.
- Hanarisanty, L., and Ade Pratama, B. (2022). Calculation of Greenhouse Gas Emissions (CH4, CO2, and N2O) in Kasihan District in the Agricultural Sector Using the IPCC Application, Journal of Engineering Science and Technology Management (JES-TM), Vol. 2, No. 2, 96–103. doi:10.31004/jestm.v2i2.57.
- Yoro, K. O., and Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect, Advances in Carbon Capture, Elsevier, 3–28. doi:10.1016/B978-0-12-819657-1.00001-3.
- Guru, P. K., Shrivastava, A. K., Tiwari, P., Khandai, S., and Chandel, N. S. (2022). Estimation of carbon emissions of agricultural machinery use in India, Oryza-An International Journal on Rice, Vol. 59, No. 3, 260–268. doi:10.35709/ory.2022.59.3.1.
- Qamar, S. H., Hanak, D. P., Ali, M., Gomes, J., and Khan, K. Z. (2024). Design, Modeling and Cost Analysis of 8.79 MW Solar Photovoltaic Power Plant at National University of Sciences and Technology (NUST), Islamabad, Pakistan, Scientific Reports, Vol. 14, No. 1, 25351. doi:10.1038/s41598-024-74187-w.
- Shravanth Vasisht, M., Srinivasan, J., and Ramasesha, S. K. (2016). Performance of Solar Photovoltaic Installations: Effect of Seasonal Variations, Solar Energy, Vol. 131, 39–46. doi:10.1016/j.solener.2016.02.013.
- Mohammed, A., Pasupuleti, J., Khatib, T., and Elmenreich, W. (2015). A Review of Process and Operational System Control of Hybrid Photovoltaic/Diesel Generator Systems, Renewable and Sustainable Energy Reviews, Vol. 44, 436–446. doi:10.1016/j.rser.2014.12.035.
- Kolawole, M. I., and Ayodele, B. L. (2024). Smart Electronics in Solar-Powered Grid Systems for Enhanced Renewable Energy Efficiency and Reliability.
- Marqusee, J., Becker, W., and Ericson, S. (2021). Resilience and Economics of Microgrids with PV, Battery Storage, and Networked Diesel Generators, Advances in Applied Energy, Vol. 3, 100049. doi:10.1016/j.adapen.2021.100049.
- Shafiullah, M., Ahmed, S. D., and Al-Sulaiman, F. A. (2022). Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review, IEEE Access, Vol. 10, 52233–52257. doi:10.1109/ACCESS.2022.3174555.
- Giedraityte, A., Rimkevicius, S., Marciukaitis, M., Radziukynas, V., and Bakas, R. (2025). Hybrid Renewable Energy Systems—A Review of Optimization Approaches and Future Challenges, Applied Sciences, Vol. 15, No. 4, 1744. doi:10.3390/app15041744.
- Antoneas, G., and Koronaki, I. (2024). Geothermal Solutions for Urban Energy Challenges: A Focus on CO2 Plume Geothermal Systems, Energies, Vol. 17, No. 2, 294. doi:10.3390/en17020294.
- Rizqi Al Asy’ari, M., Tobing, J., Purba, D., Fadhillah, F. R., Kandou, S. B. T., and Adityatama, D. W. (2022). Carbon Emissions Reduction in Geothermal Drilling Project: A Preliminary Study, IOP Conference Series: Earth and Environmental Science, Vol. 1014, No. 1, 012017. doi:10.1088/1755-1315/1014/1/012017.
- Ukoba, K., Olatunji, K. O., Adeoye, E., Jen, T.-C., and Madyira, D. M. (2024). Optimizing Renewable Energy Systems through Artificial Intelligence: Review and Future Prospects, Energy & Environment, Vol. 35, No. 7, 3833–3879. doi:10.1177/0958305X241256293.
- Bakare, M. S., Abdulkarim, A., Shuaibu, A. N., and Muhamad, M. M. (2024). A Hybrid Long-Term Industrial Electrical Load Forecasting Model Using Optimized ANFIS with Gene Expression Programming, Energy Reports, Vol. 11, 5831–5844. doi:10.1016/j.egyr.2024.05.045.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rendy Sidharta, Erkata Yandri, Omrie Ludji, Ayub Timba, Clizardo Amaral, Ratna Ariati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















