Influence of Elevational and Environmental Factors on Parasitic Nematode Distribution in Arabica Coffee in the Gayo Highlands, Indonesia
DOI:
https://doi.org/10.60084/ljes.v3i2.293Keywords:
Parasitic nematodes, Altitudinal gradient, Coffee arabica, Gayo HighlandsAbstract
Highland agricultural landscapes are sensitive to environmental variation, particularly in regions like the Gayo Highlands of Aceh, Indonesia, where Arabica coffee (Coffea arabica L.) is a major crop. While parasitic nematodes are known to affect crop health and soil ecosystems, little is known about how their abundance and distribution vary with elevation in tropical coffee systems. The Gayo Highlands, despite their significant contribution to national coffee production, have been understudied in terms of soil biodiversity and nematode-related threats. To address this knowledge gap, we assessed the composition and abundance of parasitic nematodes in coffee plantations across three elevation zones: 800–1000 m, 1001–1200 m, and 1201–1400 m above sea level. We collected soil and root samples from symptomatic coffee plants, extracted nematodes using the Baermann funnel method, and identified them to the genus level. The study found three genera: Pratylenchus, Meloidogyne, and Rotylenchus. Pratylenchus was the most abundant, particularly at 800–1,000 m (34 individuals/10 ml), while the highest total nematode abundance occurred at 1,001–1,200 m (7.2 ± 1.44 individuals/10 ml). Statistical analysis showed significant differences in nematode abundance between elevation zones. These results indicate that elevation influences nematode populations, likely through environmental factors such as temperature, soil moisture, and pH. Understanding these patterns is important for developing site-specific strategies for pest management and maintaining soil health in highland coffee systems.
Downloads
References
- Anhar, A., Rasyid, U. H. A., Muslih, A. M., Baihaqi, A., Romano, and Abubakar, Y. (2021). Sustainable Arabica Coffee Development Strategies in Aceh, Indonesia, IOP Conference Series: Earth and Environmental Science, Vol. 667, No. 1, 012106. doi:10.1088/1755-1315/667/1/012106. DOI: https://doi.org/10.1088/1755-1315/667/1/012106
- Sulaiman, M. I., Andini, R., Muzaifa, M., Marlina, L., Jaya, R., Muslih, A. M., and Widayat, H. P. (2021). Making Biodiversity Work for Coffee Production. A Case Study of Gayo Arabica Coffee in Indonesia, MOJ Ecology & Environmental Sciences, Vol. 6, No. 4, 156–162. doi:10.15406/mojes.2021.06.00228. DOI: https://doi.org/10.15406/mojes.2021.06.00228
- Badan Pusat Statistik Kabupaten Aceh Tengah. (2021). Aceh Tengah Regency in Figure, BPS Kabupaten Aceh Tengah, Takengon.
- Ferrucho, R. L., Marín-Ramírez, G. A., and Gaitan, A. (2024). Integrated Disease Management for the Sustainable Production of Colombian Coffee, Agronomy, Vol. 14, No. 6, 1286. doi:10.3390/agronomy14061286. DOI: https://doi.org/10.3390/agronomy14061286
- Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A., Alyemeni, M. N., Wijaya, L., and Shah, A. A. (2021). Influence of Ecological and Edaphic Factors on Biodiversity of Soil Nematodes, Saudi Journal of Biological Sciences, Vol. 28, No. 5, 3049–3059. doi:10.1016/j.sjbs.2021.02.046. DOI: https://doi.org/10.1016/j.sjbs.2021.02.046
- Ding, K., Qiang, Z., Hu, Z., Cheng, S., Sun, R., Fang, H., Zhang, Z., and Ma, C. (2024). Elevational Gradients of Soil Nematode Communities in Subtropical Forest Ecosystems, Forests, Vol. 15, No. 12, 2149. doi:10.3390/f15122149. DOI: https://doi.org/10.3390/f15122149
- Afzal, S., Nesar, H., Imran, Z., and Ahmad, W. (2021). Altitudinal Gradient Affect Abundance, Diversity and Metabolic Footprint of Soil Nematodes in Banihal-Pass of Pir-Panjal Mountain Range, Scientific Reports, Vol. 11, No. 1, 16214. doi:10.1038/s41598-021-95651-x. DOI: https://doi.org/10.1038/s41598-021-95651-x
- Reddy, G. V. M., Kumar, A. R., Kumar, B. V. R., and Dhanam, M. (2022). Pests and Their Management in Coffee, M. Mani (Ed.), Trends in Horticultural Entomology, Springer Nature Singapore, Singapore, 1513–1528. doi:10.1007/978-981-19-0343-4_65. DOI: https://doi.org/10.1007/978-981-19-0343-4_65
- Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., De Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., De Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Mauro Da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira Da Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., Van Der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J., and Crowther, T. W. (2019). Soil Nematode Abundance and Functional Group Composition at a Global Scale, Nature, Vol. 572, No. 7768, 194–198. doi:10.1038/s41586-019-1418-6. DOI: https://doi.org/10.1038/s41586-019-1418-6
- Pires, D., Orlando, V., Collett, R. L., Moreira, D., Costa, S. R., and Inácio, M. L. (2023). Linking Nematode Communities and Soil Health under Climate Change, Sustainability, Vol. 15, No. 15, 11747. doi:10.3390/su151511747. DOI: https://doi.org/10.3390/su151511747
- Wulandari, A. S., and Indarti, S. (2020). Distribution and Abundance of a New Pest “Root and Bulb Parasitic Nematode” at Different Elevation Levels and Soil Abiotic Factors in Garlic Growing Centres in Central Java, Key Engineering Materials, Vol. 840, 124–130. doi:10.4028/www.scientific.net/KEM.840.124. DOI: https://doi.org/10.4028/www.scientific.net/KEM.840.124
- Sun, X., Zhang, X., Zhang, S., Dai, G., Han, S., and Liang, W. (2013). Soil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest, PLoS ONE, Vol. 8, No. 12, e82468. doi:10.1371/journal.pone.0082468. DOI: https://doi.org/10.1371/journal.pone.0082468
- Biswal, D. (2022). Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices, Applied Biochemistry and Biotechnology, Vol. 194, No. 5, 2357–2417. doi:10.1007/s12010-022-03808-9. DOI: https://doi.org/10.1007/s12010-022-03808-9
- Phani, V., Dutta, T. K., Pramanik, A., and Halder, J. (2024). Impact of Climate Change on Agriculturally Important Insects and Nematodes, H. Pathak; D. Chatterjee; S. Saha; B. Das (Eds.), Climate Change Impacts on Soil-Plant-Atmosphere Continuum (Vol. 78), Springer Nature Singapore, Singapore, 447–483. doi:10.1007/978-981-99-7935-6_17.
- Ayalew Nurihun, B. (2023). The Relationship between Climate, Disease and Coffee Yield: Optimizing Management for Smallholder Farmers, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm.
- Trejo-Meléndez, V., and Contreras-Garduño, J. (2024). To Live Free or Being a Parasite: The Optimal Foraging Behavior May Favor the Evolution of Entomopathogenic Nematodes, PLOS ONE, Vol. 19, No. 3, e0298400. doi:10.1371/journal.pone.0298400. DOI: https://doi.org/10.1371/journal.pone.0298400
- Devi, T. S., Behera, H. S., Madhu, A., . S., Chaudhary, S., Koushal, S., and Priya, Dr. P. R. (2024). A Comprehensive Review on Integrated Pest Management in Nematode, International Journal of Research in Agronomy, Vol. 7, No. 12, 760–765. doi:10.33545/2618060X.2024.v7.i12j.2252. DOI: https://doi.org/10.33545/2618060X.2024.v7.i12j.2252
- Lu, C.-J., Meng, Y., Wang, Y.-L., Zhang, T., Yang, G.-F., Mo, M.-H., Ji, K.-F., Liang, L.-M., Zou, C.-G., and Zhang, K.-Q. (2022). Survival and Infectivity of Second-Stage Root-Knot Nematode Meloidogyne Incognita Juveniles Depend on Lysosome-Mediated Lipolysis, Journal of Biological Chemistry, Vol. 298, No. 3, 101637. doi:10.1016/j.jbc.2022.101637. DOI: https://doi.org/10.1016/j.jbc.2022.101637
- Bodri, M. S. (2022). NEMATODES, G. A. Lewbart (Ed.), Invertebrate Medicine (1st ed.), Wiley, 537–561. doi:10.1002/9781119569831.ch21. DOI: https://doi.org/10.1002/9781119569831.ch21
- Hunt, D. J., Palomares-Rius, J. E., and Manzanilla-López, R. H. (2018). Identification, Morphology and Biology of Plant Parasitic Nematodes., R. A. Sikora; D. Coyne; J. Hallmann; P. Timper (Eds.), Plant Parasitic Nematodes in Subtropical and Tropical Agriculture (3rd ed.), CAB International, UK, 20–61. doi:10.1079/9781786391247.0020. DOI: https://doi.org/10.1079/9781786391247.0020
- Azlay, L., El Boukhari, M. E. M., Mayad, E. H., and Barakate, M. (2023). Biological Management of Root-Knot Nematodes (Meloidogyne Spp.): A Review, Organic Agriculture, Vol. 13, No. 1, 99–117. doi:10.1007/s13165-022-00417-y. DOI: https://doi.org/10.1007/s13165-022-00417-y
- Mirsam, H., Amran Muis, and Nurnina Nonci. (2020). The Density and Diversity of Plant-Parasitic Nematodes Associated with Maize Rhizosphere in Malakaji Highland, South Sulawesi, Indonesia, Biodiversitas Journal of Biological Diversity, Vol. 21, No. 6. doi:10.13057/biodiv/d210637. DOI: https://doi.org/10.13057/biodiv/d210637
- Thompson, J. P., and Clewett, T. G. (2021). Impacts of Root-Lesion Nematode (Pratylenchus Thornei) on Plant Nutrition, Biomass, Grain Yield and Yield Components of Susceptible/Intolerant Wheat Cultivars Determined by Nematicide Applications, Agronomy, Vol. 11, No. 2, 296. doi:10.3390/agronomy11020296. DOI: https://doi.org/10.3390/agronomy11020296
- Lilley, C. J., De Souza, V. H. M., and Eves-van Den Akker, S. (2024). Plant Diseases Caused by Nematodes, Agrios’ Plant Pathology, Elsevier, 607–649. doi:10.1016/B978-0-12-822429-8.00018-2. DOI: https://doi.org/10.1016/B978-0-12-822429-8.00018-2
- Eisenback, J. D., and Triantaphyllou, H. H. (2020). Root-Knot Nematodes: Meloidogyne Species and Races, W. R. Nickle (Ed.), Manual of Agricultural Nematology (1st ed.), CRC Press, 191–274. doi:10.1201/9781003066576-6. DOI: https://doi.org/10.1201/9781003066576-6
- Sehgal, M. (2021). Plant Parasitic Nematode Problems of Agricultural and Horticultural Crops in India and Rationale Management Strategies, Integrated Pest Management Strategies for Sustainable Agriculture, New Delhi Publishers. doi:10.30954/ndp/intpest.16. DOI: https://doi.org/10.30954/ndp/intpest.16
- Amarasena, P. G. D. S., Mohotti, K. M., and De Costa, D. M. (2016). Effects of Changing Rainfall and Soil Temperature on Population Density of Pratylenchus Loosi in Tea Lands at Different Elevations, Tropical Agricultural Research, Vol. 27, No. 3, 265. doi:10.4038/tar.v27i3.8205. DOI: https://doi.org/10.4038/tar.v27i3.8205
- Kandel, S. L., Smiley, R. W., Garland-Campbell, K., Elling, A. A., Huggins, D., and Paulitz, T. C. (2018). Spatial Distribution of Root Lesion Nematodes (Pratylenchus Spp.) in a Long-Term No-till Cropping System and Their Relationship with Soil and Landscape Properties, European Journal of Plant Pathology, Vol. 150, No. 4, 1011–1021. doi:10.1007/s10658-017-1341-3. DOI: https://doi.org/10.1007/s10658-017-1341-3
- Baniya, A., Zayed, O., Ardpairin, J., Seymour, D., and Dillman, A. R. (2025). Current Trends and Future Prospects in Controlling the Citrus Nematode: Tylenchulus Semipenetrans, Agronomy, Vol. 15, No. 2, 383. doi:10.3390/agronomy15020383. DOI: https://doi.org/10.3390/agronomy15020383
- Phani, V., Dutta, T. K., Pramanik, A., and Halder, J. (2024). Impact of Climate Change on Agriculturally Important Insects and Nematodes, H. Pathak; D. Chatterjee; S. Saha; B. Das (Eds.), Climate Change Impacts on Soil-Plant-Atmosphere Continuum (Vol. 78), Springer Nature Singapore, Singapore, 447–483. doi:10.1007/978-981-99-7935-6_17. DOI: https://doi.org/10.1007/978-981-99-7935-6_17
- Thompson, J. P., Sheedy, J. G., Robinson, N. A., and Clewett, T. G. (2021). Tolerance of Wheat (Triticum Aestivum) Genotypes to Root-Lesion Nematode (Pratylenchus Thornei) in the Subtropical Grain Region of Eastern Australia, Euphytica, Vol. 217, No. 3, 48. doi:10.1007/s10681-020-02761-0. DOI: https://doi.org/10.1007/s10681-020-02761-0
- Trinh, P. Q., Peña, E. de l, Nguyen, C. N., Nguyen, H. X., and Moen, M. (2009). Plant-Parasitic Nematodes Associated with Coffee in Vietnam, Russian Journal of Nematology, Vol. 17, No. 1, 73–82.
- Budiman, A., Supramana, Giyant, and Kurniawati, F. (2020). Phytonematode Community in The Robusta and Arabica Coffee Plantation in East Java, Jurnal Fitopatologi Indonesia, Vol. 16, No. 5, 207–215. DOI: https://doi.org/10.14692/jfi.16.5.207-215
- Narzullayev, S. B. (2022). New Data on the Vertical Distribution of Nematode Communities in Mountain Ecosystems of Mount Zarafshan, Uzbekistan, Biodiversitas Journal of Biological Diversity, Vol. 23, No. 8. doi:10.13057/biodiv/d230814. DOI: https://doi.org/10.13057/biodiv/d230814
- Sarmah, Widyastuti, R., and Supraman. (2022). Nematode Community in Carrot Cultivation Land and Its Relationship with Soil Microbial Population, Jurnal Tanah Dan Iklim, Vol. 46, No. 1, 91–102.
- Oktafiyanto, M. F., and Ibrahim, R. (2021). Keragaman Dan Kelimpahan Nematoda Secara Horizontal Dan Vertikal Pada Beberapa Tanaman Sayur Di Kabupaten Cianjur, Agro Wiralodra, Vol. 4, No. 1, 9–15. doi:10.31943/agrowiralodra.v4i1.57. DOI: https://doi.org/10.31943/agrowiralodra.v4i1.57
- Kumar, N., Kumar, A., Jeena, N., Singh, R., and Singh, H. (2020). Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes, R. Goel; R. Soni; D. C. Suyal (Eds.), Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability, Springer Singapore, Singapore, 55–70. doi:10.1007/978-981-15-1902-4_4. DOI: https://doi.org/10.1007/978-981-15-1902-4_4
- Shao, Y., Wang, Z., Liu, T., Kardol, P., Ma, C., Hu, Y., Cui, Y., Zhao, C., Zhang, W., Guo, D., and Fu, S. (2023). Drivers of Nematode Diversity in Forest Soils across Climatic Zones, Proceedings of the Royal Society B: Biological Sciences, Vol. 290, No. 1994, 20230107. doi:10.1098/rspb.2023.0107. DOI: https://doi.org/10.1098/rspb.2023.0107
- Dutta, T. K., and Phani, V. (2023). The Pervasive Impact of Global Climate Change on Plant-Nematode Interaction Continuum, Frontiers in Plant Science, Vol. 14, 1143889. doi:10.3389/fpls.2023.1143889. DOI: https://doi.org/10.3389/fpls.2023.1143889
- Li, X., Liu, Z., Zhang, C., Zheng, L., and Li, H. (2024). Altitudinal Variation in Soil Nematode Communities in an Alpine Mountain Region of the Eastern Tibetan Plateau, European Journal of Soil Biology, Vol. 121, 103617. doi:10.1016/j.ejsobi.2024.103617. DOI: https://doi.org/10.1016/j.ejsobi.2024.103617
- Zhang, Y., Ji, L., and Yang, L. (2021). Abundance and Diversity of Soil Nematode Community at Different Altitudes in Cold-Temperate Montane Forests in Northeast China, Global Ecology and Conservation, Vol. 29, e01717. doi:10.1016/j.gecco.2021.e01717. DOI: https://doi.org/10.1016/j.gecco.2021.e01717
- Li, Z., Chen, X., Li, J., Liao, X., Li, D., He, X., Zhang, W., and Zhao, J. (2022). Relationships between Soil Nematode Communities and Soil Quality as Affected by Land-Use Type, Forests, Vol. 13, No. 10, 1658. doi:10.3390/f13101658. DOI: https://doi.org/10.3390/f13101658
- Guo, F., Gao, G., Sun, Q., Guo, L., and Yang, Y. (2025). Predicting High-Risk Zones for Pine Wood Nematodes Invasion: Integrating Climate Suitability, Host Availability, and Vector Dominance, Science of The Total Environment, Vol. 969, 178902. doi:10.1016/j.scitotenv.2025.178902. DOI: https://doi.org/10.1016/j.scitotenv.2025.178902
- Sei̇D, A., İMren, M., Ali̇, M. A., Toumi̇, F., Pauli̇Tz, T., and Dababat, A. A. (2021). Genetic Resistance of Wheat towards Plant-Parasitic Nematodes: Current Status and Future Prospects, Biotech Studies, Vol. 30, No. 1, 43–62. doi:10.38042/biotechstudies.944678. DOI: https://doi.org/10.38042/biotechstudies.944678
- Phani, V., Khan, M. R., and Dutta, T. K. (2021). Plant-Parasitic Nematodes as a Potential Threat to Protected Agriculture: Current Status and Management Options, Crop Protection, Vol. 144, 105573. doi:10.1016/j.cropro.2021.105573. DOI: https://doi.org/10.1016/j.cropro.2021.105573
- Ma, C.-S., Wang, B.-X., Wang, X.-J., Lin, Q.-C., Zhang, W., Yang, X.-F., Van Baaren, J., Bebber, D. P., Eigenbrode, S. D., Zalucki, M. P., Zeng, J., and Ma, G. (2025). Crop Pest Responses to Global Changes in Climate and Land Management, Nature Reviews Earth & Environment, Vol. 6, No. 4, 264–283. doi:10.1038/s43017-025-00652-3. DOI: https://doi.org/10.1038/s43017-025-00652-3
- Gc, S., Banakar, P., Harshman, D., and Khanal, C. (2025). Elevated Soil Temperatures Impact Nematode Reproduction Biology, Stresses, Vol. 5, No. 1, 2. doi:10.3390/stresses5010002. DOI: https://doi.org/10.3390/stresses5010002
- Guan, P., Li, J., Hao, C., Yang, J., Song, L., Niu, X., Wang, P., Mahamood, M., and Wu, D. (2023). Precipitation Regulated Soil Nematode Community and Footprint in Cropland Ecosystems, Soil Ecology Letters, Vol. 5, No. 4, 230177. doi:10.1007/s42832-023-0177-3. DOI: https://doi.org/10.1007/s42832-023-0177-3
- Saikai, K. K., Oduori, C., Situma, E., Njoroge, S., Murunde, R., Kimenju, J. W., Miano, D. W., Haukeland, S., and Coyne, D. (2023). Biocontrol-Based Strategies for Improving Soil Health and Managing Plant-Parasitic Nematodes in Coffee Production, Frontiers in Plant Science, Vol. 14, 1196171. doi:10.3389/fpls.2023.1196171. DOI: https://doi.org/10.3389/fpls.2023.1196171
- Spedicato, A., Zeppilli, D., Thouzeau, G., and Michaud, E. (2023). Nematode Diversity Patterns in Mangroves: A Review of Environmental Drivers at Different Spatial Scales, Biodiversity and Conservation, Vol. 32, No. 5, 1451–1471. doi:10.1007/s10531-023-02562-6. DOI: https://doi.org/10.1007/s10531-023-02562-6
- Dietrich, P., Cesarz, S., Liu, T., Roscher, C., and Eisenhauer, N. (2021). Effects of Plant Species Diversity on Nematode Community Composition and Diversity in a Long-Term Biodiversity Experiment, Oecologia, Vol. 197, No. 2, 297–311. doi:10.1007/s00442-021-04956-1. DOI: https://doi.org/10.1007/s00442-021-04956-1
- Lazarova, S., Coyne, D., G. Rodríguez, M. G., Peteira, B., and Ciancio, A. (2021). Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review, Diversity, Vol. 13, No. 2, 64. doi:10.3390/d13020064. DOI: https://doi.org/10.3390/d13020064
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muhammad Ipan Surna, Qalbin Salim Fazli, Tjut Chamzurni, Susanna Susanna, Ghazi Mauer Idroes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















