Influence of Elevational and Environmental Factors on Parasitic Nematode Distribution in Arabica Coffee in the Gayo Highlands, Indonesia

Authors

  • Muhammad Ipan Surna Department of Plant Protection, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Qalbin Salim Fazli Department of Plant Protection, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Tjut Chamzurni Department of Plant Protection, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Susanna Susanna Department of Plant Protection, Faculty of Agriculture, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Ghazi Mauer Idroes Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia

DOI:

https://doi.org/10.60084/ljes.v3i2.293

Keywords:

Parasitic nematodes, Altitudinal gradient, Coffee arabica, Gayo Highlands

Abstract

Highland agricultural landscapes are sensitive to environmental variation, particularly in regions like the Gayo Highlands of Aceh, Indonesia, where Arabica coffee (Coffea arabica L.) is a major crop. While parasitic nematodes are known to affect crop health and soil ecosystems, little is known about how their abundance and distribution vary with elevation in tropical coffee systems. The Gayo Highlands, despite their significant contribution to national coffee production, have been understudied in terms of soil biodiversity and nematode-related threats. To address this knowledge gap, we assessed the composition and abundance of parasitic nematodes in coffee plantations across three elevation zones: 800–1000 m, 1001–1200 m, and 1201–1400 m above sea level. We collected soil and root samples from symptomatic coffee plants, extracted nematodes using the Baermann funnel method, and identified them to the genus level. The study found three genera: Pratylenchus, Meloidogyne, and Rotylenchus. Pratylenchus was the most abundant, particularly at 800–1,000 m (34 individuals/10 ml), while the highest total nematode abundance occurred at 1,001–1,200 m (7.2 ± 1.44 individuals/10 ml). Statistical analysis showed significant differences in nematode abundance between elevation zones. These results indicate that elevation influences nematode populations, likely through environmental factors such as temperature, soil moisture, and pH. Understanding these patterns is important for developing site-specific strategies for pest management and maintaining soil health in highland coffee systems.

Downloads

Download data is not yet available.

References

  1. Anhar, A., Rasyid, U. H. A., Muslih, A. M., Baihaqi, A., Romano, and Abubakar, Y. (2021). Sustainable Arabica Coffee Development Strategies in Aceh, Indonesia, IOP Conference Series: Earth and Environmental Science, Vol. 667, No. 1, 012106. doi:10.1088/1755-1315/667/1/012106. DOI: https://doi.org/10.1088/1755-1315/667/1/012106
  2. Sulaiman, M. I., Andini, R., Muzaifa, M., Marlina, L., Jaya, R., Muslih, A. M., and Widayat, H. P. (2021). Making Biodiversity Work for Coffee Production. A Case Study of Gayo Arabica Coffee in Indonesia, MOJ Ecology & Environmental Sciences, Vol. 6, No. 4, 156–162. doi:10.15406/mojes.2021.06.00228. DOI: https://doi.org/10.15406/mojes.2021.06.00228
  3. Badan Pusat Statistik Kabupaten Aceh Tengah. (2021). Aceh Tengah Regency in Figure, BPS Kabupaten Aceh Tengah, Takengon.
  4. Ferrucho, R. L., Marín-Ramírez, G. A., and Gaitan, A. (2024). Integrated Disease Management for the Sustainable Production of Colombian Coffee, Agronomy, Vol. 14, No. 6, 1286. doi:10.3390/agronomy14061286. DOI: https://doi.org/10.3390/agronomy14061286
  5. Nisa, R. U., Tantray, A. Y., Kouser, N., Allie, K. A., Wani, S. M., Alamri, S. A., Alyemeni, M. N., Wijaya, L., and Shah, A. A. (2021). Influence of Ecological and Edaphic Factors on Biodiversity of Soil Nematodes, Saudi Journal of Biological Sciences, Vol. 28, No. 5, 3049–3059. doi:10.1016/j.sjbs.2021.02.046. DOI: https://doi.org/10.1016/j.sjbs.2021.02.046
  6. Ding, K., Qiang, Z., Hu, Z., Cheng, S., Sun, R., Fang, H., Zhang, Z., and Ma, C. (2024). Elevational Gradients of Soil Nematode Communities in Subtropical Forest Ecosystems, Forests, Vol. 15, No. 12, 2149. doi:10.3390/f15122149. DOI: https://doi.org/10.3390/f15122149
  7. Afzal, S., Nesar, H., Imran, Z., and Ahmad, W. (2021). Altitudinal Gradient Affect Abundance, Diversity and Metabolic Footprint of Soil Nematodes in Banihal-Pass of Pir-Panjal Mountain Range, Scientific Reports, Vol. 11, No. 1, 16214. doi:10.1038/s41598-021-95651-x. DOI: https://doi.org/10.1038/s41598-021-95651-x
  8. Reddy, G. V. M., Kumar, A. R., Kumar, B. V. R., and Dhanam, M. (2022). Pests and Their Management in Coffee, M. Mani (Ed.), Trends in Horticultural Entomology, Springer Nature Singapore, Singapore, 1513–1528. doi:10.1007/978-981-19-0343-4_65. DOI: https://doi.org/10.1007/978-981-19-0343-4_65
  9. Van Den Hoogen, J., Geisen, S., Routh, D., Ferris, H., Traunspurger, W., Wardle, D. A., De Goede, R. G. M., Adams, B. J., Ahmad, W., Andriuzzi, W. S., Bardgett, R. D., Bonkowski, M., Campos-Herrera, R., Cares, J. E., Caruso, T., De Brito Caixeta, L., Chen, X., Costa, S. R., Creamer, R., Mauro Da Cunha Castro, J., Dam, M., Djigal, D., Escuer, M., Griffiths, B. S., Gutiérrez, C., Hohberg, K., Kalinkina, D., Kardol, P., Kergunteuil, A., Korthals, G., Krashevska, V., Kudrin, A. A., Li, Q., Liang, W., Magilton, M., Marais, M., Martín, J. A. R., Matveeva, E., Mayad, E. H., Mulder, C., Mullin, P., Neilson, R., Nguyen, T. A. D., Nielsen, U. N., Okada, H., Rius, J. E. P., Pan, K., Peneva, V., Pellissier, L., Carlos Pereira Da Silva, J., Pitteloud, C., Powers, T. O., Powers, K., Quist, C. W., Rasmann, S., Moreno, S. S., Scheu, S., Setälä, H., Sushchuk, A., Tiunov, A. V., Trap, J., Van Der Putten, W., Vestergård, M., Villenave, C., Waeyenberge, L., Wall, D. H., Wilschut, R., Wright, D. G., Yang, J., and Crowther, T. W. (2019). Soil Nematode Abundance and Functional Group Composition at a Global Scale, Nature, Vol. 572, No. 7768, 194–198. doi:10.1038/s41586-019-1418-6. DOI: https://doi.org/10.1038/s41586-019-1418-6
  10. Pires, D., Orlando, V., Collett, R. L., Moreira, D., Costa, S. R., and Inácio, M. L. (2023). Linking Nematode Communities and Soil Health under Climate Change, Sustainability, Vol. 15, No. 15, 11747. doi:10.3390/su151511747. DOI: https://doi.org/10.3390/su151511747
  11. Wulandari, A. S., and Indarti, S. (2020). Distribution and Abundance of a New Pest “Root and Bulb Parasitic Nematode” at Different Elevation Levels and Soil Abiotic Factors in Garlic Growing Centres in Central Java, Key Engineering Materials, Vol. 840, 124–130. doi:10.4028/www.scientific.net/KEM.840.124. DOI: https://doi.org/10.4028/www.scientific.net/KEM.840.124
  12. Sun, X., Zhang, X., Zhang, S., Dai, G., Han, S., and Liang, W. (2013). Soil Nematode Responses to Increases in Nitrogen Deposition and Precipitation in a Temperate Forest, PLoS ONE, Vol. 8, No. 12, e82468. doi:10.1371/journal.pone.0082468. DOI: https://doi.org/10.1371/journal.pone.0082468
  13. Biswal, D. (2022). Nematodes as Ghosts of Land Use Past: Elucidating the Roles of Soil Nematode Community Studies as Indicators of Soil Health and Land Management Practices, Applied Biochemistry and Biotechnology, Vol. 194, No. 5, 2357–2417. doi:10.1007/s12010-022-03808-9. DOI: https://doi.org/10.1007/s12010-022-03808-9
  14. Phani, V., Dutta, T. K., Pramanik, A., and Halder, J. (2024). Impact of Climate Change on Agriculturally Important Insects and Nematodes, H. Pathak; D. Chatterjee; S. Saha; B. Das (Eds.), Climate Change Impacts on Soil-Plant-Atmosphere Continuum (Vol. 78), Springer Nature Singapore, Singapore, 447–483. doi:10.1007/978-981-99-7935-6_17.
  15. Ayalew Nurihun, B. (2023). The Relationship between Climate, Disease and Coffee Yield: Optimizing Management for Smallholder Farmers, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm.
  16. Trejo-Meléndez, V., and Contreras-Garduño, J. (2024). To Live Free or Being a Parasite: The Optimal Foraging Behavior May Favor the Evolution of Entomopathogenic Nematodes, PLOS ONE, Vol. 19, No. 3, e0298400. doi:10.1371/journal.pone.0298400. DOI: https://doi.org/10.1371/journal.pone.0298400
  17. Devi, T. S., Behera, H. S., Madhu, A., . S., Chaudhary, S., Koushal, S., and Priya, Dr. P. R. (2024). A Comprehensive Review on Integrated Pest Management in Nematode, International Journal of Research in Agronomy, Vol. 7, No. 12, 760–765. doi:10.33545/2618060X.2024.v7.i12j.2252. DOI: https://doi.org/10.33545/2618060X.2024.v7.i12j.2252
  18. Lu, C.-J., Meng, Y., Wang, Y.-L., Zhang, T., Yang, G.-F., Mo, M.-H., Ji, K.-F., Liang, L.-M., Zou, C.-G., and Zhang, K.-Q. (2022). Survival and Infectivity of Second-Stage Root-Knot Nematode Meloidogyne Incognita Juveniles Depend on Lysosome-Mediated Lipolysis, Journal of Biological Chemistry, Vol. 298, No. 3, 101637. doi:10.1016/j.jbc.2022.101637. DOI: https://doi.org/10.1016/j.jbc.2022.101637
  19. Bodri, M. S. (2022). NEMATODES, G. A. Lewbart (Ed.), Invertebrate Medicine (1st ed.), Wiley, 537–561. doi:10.1002/9781119569831.ch21. DOI: https://doi.org/10.1002/9781119569831.ch21
  20. Hunt, D. J., Palomares-Rius, J. E., and Manzanilla-López, R. H. (2018). Identification, Morphology and Biology of Plant Parasitic Nematodes., R. A. Sikora; D. Coyne; J. Hallmann; P. Timper (Eds.), Plant Parasitic Nematodes in Subtropical and Tropical Agriculture (3rd ed.), CAB International, UK, 20–61. doi:10.1079/9781786391247.0020. DOI: https://doi.org/10.1079/9781786391247.0020
  21. Azlay, L., El Boukhari, M. E. M., Mayad, E. H., and Barakate, M. (2023). Biological Management of Root-Knot Nematodes (Meloidogyne Spp.): A Review, Organic Agriculture, Vol. 13, No. 1, 99–117. doi:10.1007/s13165-022-00417-y. DOI: https://doi.org/10.1007/s13165-022-00417-y
  22. Mirsam, H., Amran Muis, and Nurnina Nonci. (2020). The Density and Diversity of Plant-Parasitic Nematodes Associated with Maize Rhizosphere in Malakaji Highland, South Sulawesi, Indonesia, Biodiversitas Journal of Biological Diversity, Vol. 21, No. 6. doi:10.13057/biodiv/d210637. DOI: https://doi.org/10.13057/biodiv/d210637
  23. Thompson, J. P., and Clewett, T. G. (2021). Impacts of Root-Lesion Nematode (Pratylenchus Thornei) on Plant Nutrition, Biomass, Grain Yield and Yield Components of Susceptible/Intolerant Wheat Cultivars Determined by Nematicide Applications, Agronomy, Vol. 11, No. 2, 296. doi:10.3390/agronomy11020296. DOI: https://doi.org/10.3390/agronomy11020296
  24. Lilley, C. J., De Souza, V. H. M., and Eves-van Den Akker, S. (2024). Plant Diseases Caused by Nematodes, Agrios’ Plant Pathology, Elsevier, 607–649. doi:10.1016/B978-0-12-822429-8.00018-2. DOI: https://doi.org/10.1016/B978-0-12-822429-8.00018-2
  25. Eisenback, J. D., and Triantaphyllou, H. H. (2020). Root-Knot Nematodes: Meloidogyne Species and Races, W. R. Nickle (Ed.), Manual of Agricultural Nematology (1st ed.), CRC Press, 191–274. doi:10.1201/9781003066576-6. DOI: https://doi.org/10.1201/9781003066576-6
  26. Sehgal, M. (2021). Plant Parasitic Nematode Problems of Agricultural and Horticultural Crops in India and Rationale Management Strategies, Integrated Pest Management Strategies for Sustainable Agriculture, New Delhi Publishers. doi:10.30954/ndp/intpest.16. DOI: https://doi.org/10.30954/ndp/intpest.16
  27. Amarasena, P. G. D. S., Mohotti, K. M., and De Costa, D. M. (2016). Effects of Changing Rainfall and Soil Temperature on Population Density of Pratylenchus Loosi in Tea Lands at Different Elevations, Tropical Agricultural Research, Vol. 27, No. 3, 265. doi:10.4038/tar.v27i3.8205. DOI: https://doi.org/10.4038/tar.v27i3.8205
  28. Kandel, S. L., Smiley, R. W., Garland-Campbell, K., Elling, A. A., Huggins, D., and Paulitz, T. C. (2018). Spatial Distribution of Root Lesion Nematodes (Pratylenchus Spp.) in a Long-Term No-till Cropping System and Their Relationship with Soil and Landscape Properties, European Journal of Plant Pathology, Vol. 150, No. 4, 1011–1021. doi:10.1007/s10658-017-1341-3. DOI: https://doi.org/10.1007/s10658-017-1341-3
  29. Baniya, A., Zayed, O., Ardpairin, J., Seymour, D., and Dillman, A. R. (2025). Current Trends and Future Prospects in Controlling the Citrus Nematode: Tylenchulus Semipenetrans, Agronomy, Vol. 15, No. 2, 383. doi:10.3390/agronomy15020383. DOI: https://doi.org/10.3390/agronomy15020383
  30. Phani, V., Dutta, T. K., Pramanik, A., and Halder, J. (2024). Impact of Climate Change on Agriculturally Important Insects and Nematodes, H. Pathak; D. Chatterjee; S. Saha; B. Das (Eds.), Climate Change Impacts on Soil-Plant-Atmosphere Continuum (Vol. 78), Springer Nature Singapore, Singapore, 447–483. doi:10.1007/978-981-99-7935-6_17. DOI: https://doi.org/10.1007/978-981-99-7935-6_17
  31. Thompson, J. P., Sheedy, J. G., Robinson, N. A., and Clewett, T. G. (2021). Tolerance of Wheat (Triticum Aestivum) Genotypes to Root-Lesion Nematode (Pratylenchus Thornei) in the Subtropical Grain Region of Eastern Australia, Euphytica, Vol. 217, No. 3, 48. doi:10.1007/s10681-020-02761-0. DOI: https://doi.org/10.1007/s10681-020-02761-0
  32. Trinh, P. Q., Peña, E. de l, Nguyen, C. N., Nguyen, H. X., and Moen, M. (2009). Plant-Parasitic Nematodes Associated with Coffee in Vietnam, Russian Journal of Nematology, Vol. 17, No. 1, 73–82.
  33. Budiman, A., Supramana, Giyant, and Kurniawati, F. (2020). Phytonematode Community in The Robusta and Arabica Coffee Plantation in East Java, Jurnal Fitopatologi Indonesia, Vol. 16, No. 5, 207–215. DOI: https://doi.org/10.14692/jfi.16.5.207-215
  34. Narzullayev, S. B. (2022). New Data on the Vertical Distribution of Nematode Communities in Mountain Ecosystems of Mount Zarafshan, Uzbekistan, Biodiversitas Journal of Biological Diversity, Vol. 23, No. 8. doi:10.13057/biodiv/d230814. DOI: https://doi.org/10.13057/biodiv/d230814
  35. Sarmah, Widyastuti, R., and Supraman. (2022). Nematode Community in Carrot Cultivation Land and Its Relationship with Soil Microbial Population, Jurnal Tanah Dan Iklim, Vol. 46, No. 1, 91–102.
  36. Oktafiyanto, M. F., and Ibrahim, R. (2021). Keragaman Dan Kelimpahan Nematoda Secara Horizontal Dan Vertikal Pada Beberapa Tanaman Sayur Di Kabupaten Cianjur, Agro Wiralodra, Vol. 4, No. 1, 9–15. doi:10.31943/agrowiralodra.v4i1.57. DOI: https://doi.org/10.31943/agrowiralodra.v4i1.57
  37. Kumar, N., Kumar, A., Jeena, N., Singh, R., and Singh, H. (2020). Factors Influencing Soil Ecosystem and Agricultural Productivity at Higher Altitudes, R. Goel; R. Soni; D. C. Suyal (Eds.), Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability, Springer Singapore, Singapore, 55–70. doi:10.1007/978-981-15-1902-4_4. DOI: https://doi.org/10.1007/978-981-15-1902-4_4
  38. Shao, Y., Wang, Z., Liu, T., Kardol, P., Ma, C., Hu, Y., Cui, Y., Zhao, C., Zhang, W., Guo, D., and Fu, S. (2023). Drivers of Nematode Diversity in Forest Soils across Climatic Zones, Proceedings of the Royal Society B: Biological Sciences, Vol. 290, No. 1994, 20230107. doi:10.1098/rspb.2023.0107. DOI: https://doi.org/10.1098/rspb.2023.0107
  39. Dutta, T. K., and Phani, V. (2023). The Pervasive Impact of Global Climate Change on Plant-Nematode Interaction Continuum, Frontiers in Plant Science, Vol. 14, 1143889. doi:10.3389/fpls.2023.1143889. DOI: https://doi.org/10.3389/fpls.2023.1143889
  40. Li, X., Liu, Z., Zhang, C., Zheng, L., and Li, H. (2024). Altitudinal Variation in Soil Nematode Communities in an Alpine Mountain Region of the Eastern Tibetan Plateau, European Journal of Soil Biology, Vol. 121, 103617. doi:10.1016/j.ejsobi.2024.103617. DOI: https://doi.org/10.1016/j.ejsobi.2024.103617
  41. Zhang, Y., Ji, L., and Yang, L. (2021). Abundance and Diversity of Soil Nematode Community at Different Altitudes in Cold-Temperate Montane Forests in Northeast China, Global Ecology and Conservation, Vol. 29, e01717. doi:10.1016/j.gecco.2021.e01717. DOI: https://doi.org/10.1016/j.gecco.2021.e01717
  42. Li, Z., Chen, X., Li, J., Liao, X., Li, D., He, X., Zhang, W., and Zhao, J. (2022). Relationships between Soil Nematode Communities and Soil Quality as Affected by Land-Use Type, Forests, Vol. 13, No. 10, 1658. doi:10.3390/f13101658. DOI: https://doi.org/10.3390/f13101658
  43. Guo, F., Gao, G., Sun, Q., Guo, L., and Yang, Y. (2025). Predicting High-Risk Zones for Pine Wood Nematodes Invasion: Integrating Climate Suitability, Host Availability, and Vector Dominance, Science of The Total Environment, Vol. 969, 178902. doi:10.1016/j.scitotenv.2025.178902. DOI: https://doi.org/10.1016/j.scitotenv.2025.178902
  44. Sei̇D, A., İMren, M., Ali̇, M. A., Toumi̇, F., Pauli̇Tz, T., and Dababat, A. A. (2021). Genetic Resistance of Wheat towards Plant-Parasitic Nematodes: Current Status and Future Prospects, Biotech Studies, Vol. 30, No. 1, 43–62. doi:10.38042/biotechstudies.944678. DOI: https://doi.org/10.38042/biotechstudies.944678
  45. Phani, V., Khan, M. R., and Dutta, T. K. (2021). Plant-Parasitic Nematodes as a Potential Threat to Protected Agriculture: Current Status and Management Options, Crop Protection, Vol. 144, 105573. doi:10.1016/j.cropro.2021.105573. DOI: https://doi.org/10.1016/j.cropro.2021.105573
  46. Ma, C.-S., Wang, B.-X., Wang, X.-J., Lin, Q.-C., Zhang, W., Yang, X.-F., Van Baaren, J., Bebber, D. P., Eigenbrode, S. D., Zalucki, M. P., Zeng, J., and Ma, G. (2025). Crop Pest Responses to Global Changes in Climate and Land Management, Nature Reviews Earth & Environment, Vol. 6, No. 4, 264–283. doi:10.1038/s43017-025-00652-3. DOI: https://doi.org/10.1038/s43017-025-00652-3
  47. Gc, S., Banakar, P., Harshman, D., and Khanal, C. (2025). Elevated Soil Temperatures Impact Nematode Reproduction Biology, Stresses, Vol. 5, No. 1, 2. doi:10.3390/stresses5010002. DOI: https://doi.org/10.3390/stresses5010002
  48. Guan, P., Li, J., Hao, C., Yang, J., Song, L., Niu, X., Wang, P., Mahamood, M., and Wu, D. (2023). Precipitation Regulated Soil Nematode Community and Footprint in Cropland Ecosystems, Soil Ecology Letters, Vol. 5, No. 4, 230177. doi:10.1007/s42832-023-0177-3. DOI: https://doi.org/10.1007/s42832-023-0177-3
  49. Saikai, K. K., Oduori, C., Situma, E., Njoroge, S., Murunde, R., Kimenju, J. W., Miano, D. W., Haukeland, S., and Coyne, D. (2023). Biocontrol-Based Strategies for Improving Soil Health and Managing Plant-Parasitic Nematodes in Coffee Production, Frontiers in Plant Science, Vol. 14, 1196171. doi:10.3389/fpls.2023.1196171. DOI: https://doi.org/10.3389/fpls.2023.1196171
  50. Spedicato, A., Zeppilli, D., Thouzeau, G., and Michaud, E. (2023). Nematode Diversity Patterns in Mangroves: A Review of Environmental Drivers at Different Spatial Scales, Biodiversity and Conservation, Vol. 32, No. 5, 1451–1471. doi:10.1007/s10531-023-02562-6. DOI: https://doi.org/10.1007/s10531-023-02562-6
  51. Dietrich, P., Cesarz, S., Liu, T., Roscher, C., and Eisenhauer, N. (2021). Effects of Plant Species Diversity on Nematode Community Composition and Diversity in a Long-Term Biodiversity Experiment, Oecologia, Vol. 197, No. 2, 297–311. doi:10.1007/s00442-021-04956-1. DOI: https://doi.org/10.1007/s00442-021-04956-1
  52. Lazarova, S., Coyne, D., G. Rodríguez, M. G., Peteira, B., and Ciancio, A. (2021). Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review, Diversity, Vol. 13, No. 2, 64. doi:10.3390/d13020064. DOI: https://doi.org/10.3390/d13020064

Downloads

Published

2025-05-23

How to Cite

Surna, M. I., Fazli, Q. S., Chamzurni, T., Susanna, S., & Idroes, G. M. (2025). Influence of Elevational and Environmental Factors on Parasitic Nematode Distribution in Arabica Coffee in the Gayo Highlands, Indonesia. Leuser Journal of Environmental Studies, 3(2), 56–66. https://doi.org/10.60084/ljes.v3i2.293