Resilience and Adaptation: Plant Ecology in Indonesia’s Geothermal Environments

Authors

  • Ghazi Mauer Idroes Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Khairan Khairan Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Eko Suhartono Department of Medical Chemistry/Biochemistry, Faculty of Medicine, Lambung Mangkurat University, Banjarbaru 70124, Indonesia
  • Rasi Prasetio Organisasi Riset Tenaga Nuklir, Badan Riset dan Inovasi Nasional (ORTN - BRIN), Jakarta Pusat 10340, Indonesia
  • Ghalieb Mutig Idroes Energy and Green Economics Unit, Graha Primera Saintifika, Aceh Besar 23371, Indonesia
  • Suhendrayatna Suhendrayatna Department of Chemical Engineering, Faculty of Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/ljes.v3i1.294

Keywords:

Thermophilic flora , Abiotic stress tolerance , Tropical geothermal ecosystems , Successional plant communities , Environmental bioindicators

Abstract

Geothermal ecosystems are defined by extreme environmental conditions, such as elevated temperatures, high concentrations of toxic chemicals, and fluctuations in abiotic stressors, which shape plant survival and adaptation. These unique ecosystems, found across various geothermal regions globally, support specialized plant communities that have developed distinctive morphological, physiological, and ecological adaptations. Indonesia, located on the Pacific Ring of Fire, is one of the world’s richest geothermal nations, offering an important yet underexplored context for studying vegetation in geothermal zones. This review examines the environmental conditions of geothermal ecosystems, the adaptive strategies of vegetation, and patterns of plant diversity within Indonesian geothermal fields. It also explores ecological succession, community dynamics, and the potential use of geothermal vegetation as environmental indicators for biomonitoring. Despite growing interest, significant research gaps remain, particularly in long-term monitoring and the integration of molecular-level studies. Addressing these gaps is essential for enhancing scientific understanding and informing conservation and sustainable geothermal energy development in tropical regions. This review highlights the ecological significance of geothermal vegetation and underscores the need for interdisciplinary research to support both biodiversity preservation and responsible energy exploitation.

Downloads

Download data is not yet available.

References

  1. Noell, S. E., Baptista, M. S., Smith, E., McDonald, I. R., Lee, C. K., Stott, M. B., Amend, J. P., and Cary, S. C. (2022). Unique Geothermal Chemistry Shapes Microbial Communities on Mt. Erebus, Antarctica, Frontiers in Microbiology, Vol. 13. doi:10.3389/fmicb.2022.836943.
  2. Vig, N., Ravindra, K., and Mor, S. (2023). Heavy Metal Pollution Assessment of Groundwater and Associated Health Risks around Coal Thermal Power Plant, Punjab, India, International Journal of Environmental Science and Technology, Vol. 20, No. 6, 6259–6274. doi:10.1007/s13762-022-04284-8.
  3. Irnawati, I., Idroes, R., Zulfiani, U., Akmal, M., Suhartono, E., Idroes, G. M., Muslem, M., Lala, A., Yusuf, M., Saiful, S., Suhud, K., Safitri, E., and Jalil, Z. (2021). Assessment of arsenic levels in water, sediment, and human hair around ie seu’um geothermal manifestation area, aceh, indonesia, Water (Switzerland), Vol. 13, No. 17, 1–13. doi:10.3390/w13172343.
  4. Wani, A. K., Akhtar, N., Sher, F., Navarrete, A. A., and Américo-Pinheiro, J. H. P. (2022). Microbial Adaptation to Different Environmental Conditions: Molecular Perspective of Evolved Genetic and Cellular Systems, Archives of Microbiology, Vol. 204, No. 2, 144. doi:10.1007/s00203-022-02757-5.
  5. Jolie, E., Scott, S., Faulds, J., Chambefort, I., Axelsson, G., Gutiérrez-Negrín, L. C., Regenspurg, S., Ziegler, M., Ayling, B., Richter, A., and Zemedkun, M. T. (2021). Geological Controls on Geothermal Resources for Power Generation, Nature Reviews Earth & Environment, Vol. 2, No. 5, 324–339. doi:10.1038/s43017-021-00154-y.
  6. Nagasawa, K., Setoguchi, H., and Sakaguchi, S. (2024). Recent Advances in Adaptation Genomics in Fumarole Fields: An Overlooked Extreme Environment, Plant And Cell Physiology. doi:10.1093/pcp/pcae122.
  7. Pambudi, N. A., and Ulfa, D. K. (2024). The Geothermal Energy Landscape in Indonesia: A Comprehensive 2023 Update on Power Generation, Policies, Risks, Phase and the Role of Education, Renewable and Sustainable Energy Reviews, Vol. 189, No. PB, 114008. doi:10.1016/j.rser.2023.114008.
  8. Yudha, S. W., Tjahjono, B., and Longhurst, P. (2022). Sustainable Transition from Fossil Fuel to Geothermal Energy: A Multi-Level Perspective Approach, Energies, Vol. 15, No. 19, 7435. doi:10.3390/en15197435.
  9. Idroes, G. M., Syahnur, S., Majid, S. A., Sasmita, N. R., and Idroes, R. (2021). Provincial Economic Level Analysis in Indonesia Based on the Geothermal Energy Potential and Growth Regional Domestic Products Using Cluster Analysis, IOP Conference Series: Materials Science and Engineering (Vol. 1087), IOP Publishing, 12079.
  10. Idroes, G. M., Afjal, M., Khan, M., Haseeb, M., Hardi, I., Noviandy, T. R., and Idroes, R. (2024). Exploring the Role of Geothermal Energy Consumption in Achieving Carbon Neutrality and Environmental Sustainability, Heliyon, e40709. doi:10.1016/j.heliyon.2024.e40709.
  11. Idroes, G. M., Hardi, I., Hilal, I. S., Utami, R. T., Noviandy, T. R., and Idroes, R. (2024). Economic Growth and Environmental Impact: Assessing the Role of Geothermal Energy in Developing and Developed Countries, Innovation and Green Development, Vol. 3, No. 3, 100144. doi:10.1016/j.igd.2024.100144.
  12. Hardi, I., Idroes, G. M., Hamaguchi, Y., Can, M., Noviandy, T. R., and Idroes, R. (2024). Business Confidence in the Shift to Renewable Energy: A Country-Specific Assessment in Major Asian Economies, Journal of Economy and Technology. doi:10.1016/j.ject.2024.08.002.
  13. Noviandy, T. R., Hardi, I., Zahriah, Z., Sofyan, R., Sasmita, N. R., Hilal, I. S., and Idroes, G. M. (2024). Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis, Leuser Journal of Environmental Studies, Vol. 2, No. 1, 41–51. doi:10.60084/ljes.v2i1.181.
  14. Zhang, M., Tan, S., Zhang, C., Han, S., Zou, S., and Chen, E. (2023). Assessing the Impact of Fractional Vegetation Cover on Urban Thermal Environment: A Case Study of Hangzhou, China, Sustainable Cities and Society, Vol. 96, 104663. doi:10.1016/j.scs.2023.104663.
  15. Rahman, A., Farrok, O., and Haque, M. M. (2022). Environmental Impact of Renewable Energy Source Based Electrical Power Plants: Solar, Wind, Hydroelectric, Biomass, Geothermal, Tidal, Ocean, and Osmotic, Renewable and Sustainable Energy Reviews, Vol. 161. doi:10.1016/j.rser.2022.112279.
  16. Putriyana, L., Daud, Y., Saha, B. B., and Nasruddin, N. (2022). A Comprehensive Data and Information on Low to Medium Temperature Geothermal Resources in Indonesia: A Review, Geomechanics and Geophysics for Geo-Energy and Geo-Resources, Vol. 8, No. 2, 58. doi:10.1007/s40948-022-00375-5.
  17. Suherlina, L., Newson, J., Kamah, Y., and Brehme, M. (2022). The Dynamic Evolution of the Lahendong Geothermal System in North-Sulawesi, Indonesia, Geothermics, Vol. 105, 102510. doi:10.1016/j.geothermics.2022.102510.
  18. Yudha, S., Tjahjono, B., and Longhurst, P. (2022). Unearthing the Dynamics of Indonesia’s Geothermal Energy Development, Energies, Vol. 15, No. 14, 5009. doi:10.3390/en15145009.
  19. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., and Mahlia, T. M. I. (2019). Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia, Energies, Vol. 12, No. 23, 4442. doi:10.3390/en12234442.
  20. Abubakar, A., Yusuf, H., Syukri, M., Nasution, R., Yusuf, M., and Idroes, R. (2023). Heavy Metals Contamination in Geothermal Medicinal Plant Extract; Chromolaena odorata Linn, Global Journal of Environmental Science and Management, Vol. 9, No. 4, 995–1004.
  21. Aragón, L., Messier, J., Atuesta-Escobar, N., and Lasso, E. (2023). Tropical Shrubs Living in an Extreme Environment Show Convergent Ecological Strategies but Divergent Ecophysiological Strategies, Annals of Botany, Vol. 131, No. 3, 491–502. doi:10.1093/aob/mcad002.
  22. Kurek, K. A., van Ophem, J., and Strojny, J. (2024). Arguments for a Community-Based Approach to Geothermal Energy Development, Energies, Vol. 17, No. 10, 2299. doi:10.3390/en17102299.
  23. Morales-Simfors, N., and Bundschuh, J. (2022, April). Arsenic-Rich Geothermal Fluids As Environmentally Hazardous Materials – a Global Assessment, Science of the Total Environment, Elsevier B.V. doi:10.1016/j.scitotenv.2021.152669.
  24. Pop, M. M., Di Lorenzo, T., and Iepure, S. (2023). Living on the Edge – an Overview of Invertebrates from Groundwater Habitats Prone to Extreme Environmental Conditions, Frontiers in Ecology and Evolution, Vol. 10. doi:10.3389/fevo.2022.1054841.
  25. Kara, H., Demir Yetis, A., and Kalkan, S. (2022). The Impact of Geothermal Fluid Discharge on Drainage Water and Groundwater Quality in Terms of Toxic Contaminants in the Agricultural Harran Plain, Turkey, Geothermics, Vol. 105, 102502. doi:10.1016/j.geothermics.2022.102502.
  26. Fink, J., Heim, E., and Klitzsch, N. (2022). State of the Art in Deep Geothermal Energy in Europe, Springer International Publishing, Cham. doi:10.1007/978-3-030-96870-0.
  27. Idroes, G. M., Rezeki, D. P., Khairi, K., Khairan, K., Idroes, R., Suhartono, E., Prasetio, R., Rahman, S. A., and Suhendrayatna, S. (2024). Validation of Heavy Metals in Geothermal to Support Water Management Practices and Mitigation Strategies, Global Journal of Environmental Science and Management. doi:10.22034/GJESM.2024.SI.10.
  28. Leotta, L., Toscano, S., Ferrante, A., Romano, D., and Francini, A. (2023). New Strategies to Increase the Abiotic Stress Tolerance in Woody Ornamental Plants in Mediterranean Climate, Plants, Vol. 12, No. 10, 2022. doi:10.3390/plants12102022.
  29. Ndayambaje, P., MacIvor, J. S., and Cadotte, M. W. (2024). Plant Diversity on Green Roofs: A Review of the Ecological Benefits, Challenges, and Best Management Practices, Nature-Based Solutions, Vol. 6, 100162. doi:10.1016/j.nbsj.2024.100162.
  30. Maulydia, N. B., Idroes, R., Khairan, K., Tallei, T. E., and Mohd Fauzi, F. (2024). Ecotoxicological Insight of Phytochemicals, Toxicological Informatics, and Heavy Metal Concentration in Tridax procumbens L. in Geothermal Areas, Global Journal of Environmental Science and Management, Vol. 10, No. 1, 369–384. doi:10.22034/gjesm.2024.01.23.
  31. Maulydia, N. B., Khairan, K., Tallei, T. E., Estevam, E. C., Patwekar, M., Mohd Fauzi, F., and Idroes, R. (2023). GC-MS Analysis Reveals Unique Chemical Composition of Blumea balsamifera (L.) DC in Ie-Jue Geothermal Area, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 1, 9–16.
  32. Greco, A., Gundabattini, E., Solomon, D. G., Singh Rassiah, R., and Masselli, C. (2022). A Review on Geothermal Renewable Energy Systems for Eco-Friendly Air-Conditioning, Energies, Vol. 15, No. 15, 5519. doi:10.3390/en15155519.
  33. Hadland, N., Hamilton, C. W., and Duhamel, S. (2024). Young Volcanic Terrains Are Windows into Early Microbial Colonization, Communications Earth & Environment, Vol. 5, No. 1, 114. doi:10.1038/s43247-024-01280-3.
  34. Wang, R., Chen, W., Chen, H., and Qin, X. (2024). Finer Soil Properties Mapping Framework for Broad-Scale Area: A Case Study of Hubei Province, China, Geoderma, Vol. 449, 117023. doi:10.1016/j.geoderma.2024.117023.
  35. Alsaleh, M., and Abdul-Rahim, A. S. (2022). Toward a Sustainable Environment: Nexus between Geothermal Energy Growth and Land Use Change in EU Economies, Environmental Science and Pollution Research, Vol. 30, No. 9, 24223–24241. doi:10.1007/s11356-022-23377-y.
  36. Kaczmarczyk, M., Sowiżdżał, A., and Tomaszewska, B. (2024). Life Cycle and Water Footprint Assessment in the Geothermal Energy Sector, Energies, Vol. 17, No. 23, 6050. doi:10.3390/en17236050.
  37. Kolis, K. M., Berg, C. S., Nelson, T. C., and Fishman, L. (2022). Population Genomic Consequences of Life-History and Mating System Adaptation to a Geothermal Soil Mosaic in Yellow Monkeyflowers, Evolution, Vol. 76, No. 4, 765–781. doi:10.1111/evo.14469.
  38. Abubakar, A., Yusuf, H., Syukri, M., Nasution, R., Karma, T., Munawar, A. A., and Idroes, R. (2021). Chemometric Classification of Geothermal and Non-Geothermal Ethanol Leaf Extract of Seurapoh (Chromolaena odorata Linn) Using Infrared Spectroscopy, IOP Conference Series: Earth and Environmental Science, Vol. 667, No. 1, 012070. doi:10.1088/1755-1315/667/1/012070.
  39. Abubakar, A., Yusuf, H., Syukri, M., Nasution, R., and Idroes, R. (2023). Chromolaena odorata Linn Leaf Extract–Geothermal versus Nongeothermal: Phytochemical, Antioxidant, and Cytotoxicity Screenings, Journal of Advanced Pharmaceutical Technology & Research, Vol. 14, No. 4, 332–337.
  40. Hilal, B., Khan, T. A., and Fariduddin, Q. (2023). Recent Advances and Mechanistic Interactions of Hydrogen Sulfide with Plant Growth Regulators in Relation to Abiotic Stress Tolerance in Plants, Plant Physiology and Biochemistry, Vol. 196, 1065–1083. doi:10.1016/j.plaphy.2023.03.006.
  41. Rosic, N. (2021). Molecular Mechanisms of Stress Tolerance in Cyanobacteria, Ecophysiology and Biochemistry of Cyanobacteria, Springer Nature Singapore, Singapore, 131–153. doi:10.1007/978-981-16-4873-1_7.
  42. Nandagopal, P., Steven, A. N., Chan, L.-W., Rahmat, Z., Jamaluddin, H., and Mohd Noh, N. I. (2021). Bioactive Metabolites Produced by Cyanobacteria for Growth Adaptation and Their Pharmacological Properties, Biology, Vol. 10, No. 10, 1061. doi:10.3390/biology10101061.
  43. Wang, Y., and Cheng, H. (2023). Environmental Fate and Ecological Impact of the Potentially Toxic Elements from the Geothermal Springs, Environmental Geochemistry and Health, Vol. 45, No. 8, 6287–6303. doi:10.1007/s10653-023-01628-2.
  44. Rotich, I. K., Chepkirui, H., Musyimi, P. K., and Kipruto, G. (2024). Geothermal Energy in Kenya: Evaluating Health Impacts and Environmental Challenges, Energy for Sustainable Development, Vol. 82, 101522. doi:10.1016/j.esd.2024.101522.
  45. Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., Naveed, S., Li, L., Wang, X., and Cheng, H. (2023). Toxic Effects of Cadmium on the Physiological and Biochemical Attributes of Plants, and Phytoremediation Strategies: A Review, Environmental Pollution, Vol. 325, 121433. doi:10.1016/j.envpol.2023.121433.
  46. Moore, J. N., and Simmons, S. F. (2013). More Power from Below, Science, Vol. 340, No. 6135, 933–934.
  47. Bhattacharya, A. (2021). Effect of Soil Water Deficit on Growth and Development of Plants: A Review, Soil Water Deficit and Physiological Issues in Plants, Springer Singapore, Singapore, 393–488. doi:10.1007/978-981-33-6276-5_5.
  48. Sharma, V., Mohammed, S. A., Devi, N., Vats, G., Tuli, H. S., Saini, A. K., Dhir, Y. W., Dhir, S., and Singh, B. (2024). Unveiling the Dynamic Relationship of Viruses and/or Symbiotic Bacteria with Plant Resilience in Abiotic Stress, Stress Biology, Vol. 4, No. 1, 10. doi:10.1007/s44154-023-00126-w.
  49. Redman, R. S., and Rodriguez, R. J. (2017). The Symbiogenic Tango: Achieving Climate-Resilient Crops Via Mutualistic Plant-Fungal Relationships, Functional Importance of the Plant Microbiome, Springer International Publishing, Cham, 71–87. doi:10.1007/978-3-319-65897-1_5.
  50. Kostešić, E., Mitrović, M., Kajan, K., Marković, T., Hausmann, B., Orlić, S., and Pjevac, P. (2023). Microbial Diversity and Activity of Biofilms from Geothermal Springs in Croatia, Microbial Ecology, Vol. 86, No. 4, 2305–2319. doi:10.1007/s00248-023-02239-1.
  51. Toor, M. D., Ur Rehman, M., Abid, J., Nath, D., Ullah, I., Basit, A., Ud Din, M. M., and Mohamed, H. I. (2024). Microbial Ecosystems as Guardians of Food Security and Water Resources in the Era of Climate Change, Water, Air, & Soil Pollution, Vol. 235, No. 11, 741. doi:10.1007/s11270-024-07533-3.
  52. Chen, Q., Song, Y., An, Y., Lu, Y., and Zhong, G. (2024). Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health, Diversity, Vol. 16, No. 12, 734. doi:10.3390/d16120734.
  53. Chaney, R. L., Baker, A. J. M., and Morel, J. L. (2021). The Long Road to Developing Agromining/Phytomining, 1–22. doi:10.1007/978-3-030-58904-2_1.
  54. Burns, B. R., Ward, J., and Downs, T. M. (2013). Trampling Impacts on Thermotolerant Vegetation of Geothermal Areas in New Zealand, Environmental Management, Vol. 52, No. 6, 1463–1473. doi:10.1007/s00267-013-0187-5.
  55. Beadel, S., Shaw, W., Bawden, R., Bycroft, C., Wilcox, F., McQueen, J., and Lloyd, K. (2018). Sustainable Management of Geothermal Vegetation in the Waikato Region, New Zealand, including Application of Ecological Indicators and New Monitoring Technology Trials, Geothermics, Vol. 73, 91–99. doi:10.1016/j.geothermics.2017.11.001.
  56. Haryoko, T., Johnson, O., Brady, M. L., Shakya, S. B., Irham, M., Yohanna, Y., Ritonga, R. P., Prawiradilaga, D. M., and Sheldon, F. H. (2020). Recent Ornithological Expeditions to Siberut Island, Mt. Talamau and Rimbo Panti Nature Reserve, Sumatra, Indonesia, TREUBIA, Vol. 47, No. 1, 13–38. doi:10.14203/treubia.v47i1.3839.
  57. Smale, M. C., Wiser, S. K., Bergin, M. J., and Fitzgerald, N. B. (2018). A Classification of the Geothermal Vegetation of the Taupō Volcanic Zone, New Zealand, Journal of the Royal Society of New Zealand, Vol. 48, No. 1, 21–38. doi:10.1080/03036758.2017.1322619.
  58. Idroes, G. M., Tallei, T. E., Idroes, R., Muslem, Riza, M., and Suhendrayatna. (2021). The Study of Calotropis gigantea Leaf Metabolites from Ie Brouk Geothermal Area Lamteuba-Aceh Besar Using Molecular Docking, IOP Conference Series: Earth and Environmental Science, Vol. 667, No. 1, 012072. doi:10.1088/1755-1315/667/1/012072.
  59. Nuraskin, C., Marlina, Idroes, R., Soraya, C., and Djufri. (2020). Identification of Secondary Metabolite of Laban Leaf Extract (Vitex pinnata L) from Geothermal Areas and Non-Geothermal of Agam Mountains in Aceh Besar, Aceh Province, Indonesia, Rasayan Journal of Chemistry, Vol. 13, No. 1, 18–23. doi:10.31788/RJC.2020.1315434.
  60. Fakri, F., Harahap, S. P., Muhni, A., Khairan, K., Hewindati, Y. T., and Idroes, G. M. (2023). Antimicrobial Properties of Medicinal Plants in the Lower Area of Ie Seu-um Geothermal Outflow, Indonesia, Malacca Pharmaceutics, Vol. 1, No. 2, 55–61. doi:10.60084/mp.v1i2.44.
  61. Rasiska, S., Asdak, C., Parikesit, P., Sudarjat, S., Gunawan, B., Setiawan, I., and Setiawan, D. (2023). Identification of Invasive Aliens Plant Species in Cultivated Area of Kamojang Crater at Ibun District, Bandung Regency, West Java, CROPSAVER - Journal of Plant Protection, Vol. 6, No. 1, 32. doi:10.24198/cropsaver.v6i1.45383.
  62. Damayanti, I., Bambang, A. N., and Soeprobowati, T. R. (2021). Plant Diversity of Petungkriyono Forest of Dieng Plateau, Central Java, Indonesia, Biodiversitas Journal of Biological Diversity, Vol. 22, No. 8. doi:10.13057/biodiv/d220849.
  63. Hadisusanto, S., Purnomo, P., Trijoko, T., Reza, A., Eprilurahman, R., Yudha, D. S., Sudibyo, P., Asti, H. A., Fauzy, N. H., Pranoto, F. S., Priyono, D. S., Mufti, F., Rabbani, A., Putri, D. M., Syamsumin, S., Tampubolon, A. P. C., and Abdullah, F. N. (2022). Biodiversity Monitoring as a Baseline for Proper Biodiversity Protection Program of PT. Geo Dipa Energi Dieng, Central Java, Indonesia, Biodiversitas Journal of Biological Diversity, Vol. 23, No. 9. doi:10.13057/biodiv/d230912.
  64. Ningrum, M. H., Fahmi, S., and Laksmita, A. N. (2024). Analysis of the Environmental Damage and Agricultural Utilization in Forest Area of Dieang Plateau, Central Java, Indonesia, IOP Conference Series: Earth and Environmental Science, Vol. 1315, No. 1, 012049. doi:10.1088/1755-1315/1315/1/012049.
  65. Ginting, C. N., Piska, F., Harmileni, H., and Fachrial, E. (2023). Molecular Identification of Thermophilic Bacteria with Antimicrobial Activity Isolated from Hot Springs in North Sumatra, Indonesia, Biodiversitas Journal of Biological Diversity, Vol. 24, No. 2. doi:10.13057/biodiv/d240210.
  66. Fachrial, E., Ginting, R. I., Harmileni, H., Lister, I. N. E., Saryono, S., and Nugroho, T. T. (2021). Isolation and Molecular Identification of Inulinase Producing Thermophilic Bacteria from Geothermal Hot Spring, 2021 IEEE International Conference on Health, Instrumentation & Measurement, and Natural Sciences (InHeNce), IEEE, 1–6. doi:10.1109/InHeNce52833.2021.9537223.
  67. Iqbal, M., and Kusumasari, B. A. (2024). Deciphering the Way Ratai Geothermal System, Lampung, Indonesia: A Comprehensive Geochemical and Isotopic Analysis, Geothermics, Vol. 119, 102985. doi:10.1016/j.geothermics.2024.102985.
  68. Aprianto, A., Maulana, A., Noviandy, T. R., Lala, A., Yusuf, M., Marwan, M., Afidh, R. P. F., Irvanizam, I., Nizamuddin, N., and Idroes, G. M. (2023). Exploring Geothermal Manifestations in Ie Jue , Indonesia : Enhancing Safety with Unmanned Aerial Vehicle, Leuser Journal of Environmental Studies, Vol. 1, No. 2, 47–54. doi:10.60084/ljes.v1i2.75.
  69. Zucconi, L., Fierro-Vásquez, N., Antunes, A., Bendia, A. G., Lavin, P., González-Aravena, M., Sani, R. K., and Banerjee, A. (2025). Advocating Microbial Diversity Conservation in Antarctica, Npj Biodiversity, Vol. 4, No. 1, 5. doi:10.1038/s44185-025-00076-8.
  70. Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. Di, Fiasca, B., Hamilton, P. B., Kubečka, J., Segadelli, S., and Znachor, P. (2020). Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation, Water, Vol. 12, No. 1, 260. doi:10.3390/w12010260.
  71. Dewanto, B. G., Rachmat, H., Kriswati, E., Yanis, M., Shomim, A. F., and Julius, A. M. (2023). Study of Geothermal and Volcanic Activity at Mount Awu, the Deadliest Active Volcano in North Sulawesi Province, Indonesia Using Optical Satellite Imagery, Journal of Volcanology and Geothermal Research, Vol. 438, 107811. doi:10.1016/j.jvolgeores.2023.107811.
  72. Nasruddin, N., Dwi Saputra, I., Mentari, T., Bardow, A., Marcelina, O., and Berlin, S. (2020). Exergy, Exergoeconomic, and Exergoenvironmental Optimization of the Geothermal Binary Cycle Power Plant at Ampallas, West Sulawesi, Indonesia, Thermal Science and Engineering Progress, Vol. 19, 100625. doi:10.1016/j.tsep.2020.100625.
  73. Moretti, R., Moune, S., Jessop, D., Glynn, C., Robert, V., and Deroussi, S. (2021). The Basse-Terre Island of Guadeloupe (Eastern Caribbean, France) and Its Volcanic-Hydrothermal Geodiversity: A Case Study of Challenges, Perspectives, and New Paradigms for Resilience and Sustainability on Volcanic Islands, Geosciences, Vol. 11, No. 11, 454. doi:10.3390/geosciences11110454.
  74. Hu, Y., Cheng, H., and Tao, S. (2023). Environmental and Human Health Impacts of Geothermal Exploitation in China and Mitigation Strategies, Critical Reviews in Environmental Science and Technology, Vol. 53, No. 11, 1173–1196. doi:10.1080/10643389.2022.2128236.
  75. Sriaporn, C., Komonjinda, S., Awiphan, S., Santitharangkun, S., Banjongprasert, C., Osathanunkul, M., and Ramsiri, B. (2024). Mineralogical and Microbial Characterization of Alkali Hot Spring Microbial Mats and Deposits in Pong Dueat Pa Pae Hot Spring, Northern Thailand, Extremophiles, Vol. 28, No. 2, 29. doi:10.1007/s00792-024-01343-5.
  76. Inostroza, M., Moune, S., Moretti, R., Robert, V., Bonifacie, M., Chilin-Eusebe, E., Burtin, A., and Burckel, P. (2022). Monitoring Hydrothermal Activity Using Major and Trace Elements in Low-Temperature Fumarolic Condensates: The Case of La Soufriere de Guadeloupe Volcano, Geosciences, Vol. 12, No. 7, 267. doi:10.3390/geosciences12070267.
  77. Khairan, K., Maulydia, N. B., Faddillah, V., Tallei, T. E., Fauzi, F. M., and Idroes, R. (2024). Uncovering Anti-Inflammatory Potential of Lantana camara Linn: Network Pharmacology and In Vitro Studies, Narra J, Vol. 4, No. 2, e894. doi:10.52225/narra.v4i2.894.
  78. Kemala, P., Idroes, R., Khairan, K., Ramli, M., Ginting, B., Helwani, Z., Aulia, R., Idroes, G. M., Yusuf, M., and Efendi, R. (2025). Eco-friendly synthesis of silver nanoparticles: Enhancing optimization reaction, characterization, and antimicrobial properties with Lantana camara from geothermal area, South African Journal of Chemical Engineering, Vol. 51, No. October 2024, 57–67. doi:10.1016/j.sajce.2024.11.002.
  79. Maulydia, N. B., Khairan, K., Idroes, R., and Tallei, T. E. (2025). Cytotoxicity Assessment of Medicinal Plants from Three Geothermal Areas Using the Brine Shrimp Lethality Assay, IOP Conference Series: Earth and Environmental Science, Vol. 1476, No. 1, 012018. doi:10.1088/1755-1315/1476/1/012018.
  80. Hidayat, M., Djufri, D., Basri, H., Ismail, N., Idroes, R., and Ikhwali, M. F. (2024). Influence of Vegetation Type on Infiltration Rate and Capacity at Ie Jue Geothermal Manifestation, Mount Seulawah Agam, Indonesia, Heliyon, Vol. 10, No. 4, e25783. doi:10.1016/j.heliyon.2024.e25783.
  81. He, Q., Wang, S., Hou, W., Feng, K., Li, F., Hai, W., Zhang, Y., Sun, Y., and Deng, Y. (2021). Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs, Science of The Total Environment, Vol. 772, 145465. doi:10.1016/j.scitotenv.2021.145465.
  82. Megantara, E. N., Husodo, T., Mutaqin, A. Z., Kendarto, D. R., Wulandari, I., Pujianto, M. P., Shanida, S. S., and Afriyanti, F. (2025). Exploring Habitat Characteristics and Herpetofauna Diversity in the Kamojang and Darajat Geothermal Power Plants, West Java, Indonesia, Biodiversitas Journal of Biological Diversity, Vol. 26, No. 1. doi:10.13057/biodiv/d260122.
  83. Van Dover, C. L. (2014). Impacts of Anthropogenic Disturbances at Deep-Sea Hydrothermal Vent Ecosystems: A Review, Marine Environmental Research, Vol. 102, 59–72. doi:10.1016/j.marenvres.2014.03.008.
  84. Davoodi, S., Al-Shargabi, M., Wood, D. A., Slivkin, S., Shishaev, G., and Rukavishnikov, V. S. (2024). Geothermal Energy Recovery from Abandoned Petroleum Wells: A Review of the Challenges and Opportunities, Sustainable Energy Technologies and Assessments, Vol. 68, 103870. doi:10.1016/j.seta.2024.103870.
  85. Fornasaro, S., Ciani, F., Nannoni, A., Morelli, G., Rimondi, V., Lattanzi, P., Cocozza, C., Fioravanti, M., and Costagliola, P. (2023). Tree Rings Record of Long-Term Atmospheric Hg Pollution in the Monte Amiata Mining District (Central Italy): Lessons from the Past for a Better Future, Minerals, Vol. 13, No. 5, 688. doi:10.3390/min13050688.
  86. Rajsz, A., Wojtuń, B., Samecka-Cymerman, A., Wąsowicz, P., Mróz, L., Rudecki, A., and Kempers, A. J. (2021). Metals in Calluna vulgaris, Empetrum nigrum, Festuca vivipara and Thymus praecox ssp. arcticus in the geothermal areas of Iceland, Environmental Science and Pollution Research, Vol. 28, No. 47, 67224–67233. doi:10.1007/s11356-021-15046-3.
  87. Szanyi, J., Rybach, L., and Abdulhaq, H. A. (2023). Geothermal Energy and Its Potential for Critical Metal Extraction—A Review, Energies, Vol. 16, No. 20, 7168. doi:10.3390/en16207168.
  88. Dilrukshi, H. A. C., Ruklani, N. C. S., and Rubasinghe, S. C. K. (2024). Cryptogams As Bio-Indicators for Ecosystem Monitoring in Sri Lanka: A Comprehensive Review and Recommendations, Environmental Monitoring and Assessment, Vol. 196, No. 12, 1231. doi:10.1007/s10661-024-13392-6.
  89. Dong, L., Tong, X., Li, X., Zhou, J., Wang, S., and Liu, B. (2019). Some Developments and New Insights of Environmental Problems and Deep Mining Strategy for Cleaner Production in Mines, Journal of Cleaner Production, Vol. 210, 1562–1578. doi:10.1016/j.jclepro.2018.10.291.
  90. Asiminicesei, D.-M., Fertu, D. I., and Gavrilescu, M. (2024). Impact of Heavy Metal Pollution in the Environment on the Metabolic Profile of Medicinal Plants and Their Therapeutic Potential, Plants, Vol. 13, No. 6, 913. doi:10.3390/plants13060913.
  91. Zhou, B., Zhang, T., and Wang, F. (2023). Microbial-Based Heavy Metal Bioremediation: Toxicity and Eco-Friendly Approaches to Heavy Metal Decontamination, Applied Sciences, Vol. 13, No. 14, 8439. doi:10.3390/app13148439.
  92. Kumar, V., Umesh, M., Shanmugam, M. K., Chakraborty, P., Duhan, L., Gummadi, S. N., Pasrija, R., Jayaraj, I., and Dasarahally Huligowda, L. K. (2023). A Retrospection on Mercury Contamination, Bioaccumulation, and Toxicity in Diverse Environments: Current Insights and Future Prospects, Sustainability, Vol. 15, No. 18, 13292. doi:10.3390/su151813292.
  93. Semenkov, I. N., Klink, G. V., Lebedeva, M. P., Krupskaya, V. V., Chernov, M. S., Dorzhieva, O. V., Kazinskiy, M. T., Sokolov, V. N., and Zavadskaya, A. V. (2021). The Variability of Soils and Vegetation of Hydrothermal Fields in the Valley of Geysers at Kamchatka Peninsula, Scientific Reports, Vol. 11, No. 1, 11077. doi:10.1038/s41598-021-90712-7.
  94. Lattanzi, P., Benesperi, R., Morelli, G., Rimondi, V., and Ruggieri, G. (2020). Biomonitoring Studies in Geothermal Areas: A Review, Frontiers in Environmental Science, Vol. 8. doi:10.3389/fenvs.2020.579343.
  95. Öztürk, Z. N., Akpınar, A., Algharib, A. M., Cagirici, H. B., Filiz, E., Hussain, B., Mahmoud, A. F., Muslu, T., Soğutmaz Özdemir, B., Yüce, M., Ullah, N., and Budak, H. (2025). Reframing Plant Stress Tolerance in the Era of Climate Change, Drought Stress, Springer Nature Switzerland, Cham, 1–63. doi:10.1007/978-3-031-80610-0_1.
  96. Richiedei, A., Giuliani, M., and Pezzagno, M. (2024). Unveiling the Soil beyond Definitions: A Holistic Framework for Sub-Regional Soil Quality Assessment and Spatial Planning, Sustainability, Vol. 16, No. 14, 6075. doi:10.3390/su16146075.
  97. Ramos-Escudero, A., García-Cascales, M. S., Cuevas, J. M., Sanner, B., and Urchueguía, J. F. (2021). Spatial Analysis of Indicators Affecting the Exploitation of Shallow Geothermal Energy at European Scale, Renewable Energy, Vol. 167, 266–281. doi:10.1016/j.renene.2020.11.081.
  98. Idroes, G. M., Suhendrayatna, S., Khairan, K., Suhartono, E., Prasetio, R., and Riza, M. (2024). Ensuring Accuracy: Critical Validation Techniques in Geochemical Analysis for Sustainable Geothermal Energy Development, Leuser Journal of Environmental Studies, Vol. 2, No. 1, 19–29. doi:10.60084/ljes.v2i1.176.
  99. Maier, R. M., and Neilson, J. W. (2015). Extreme Environments, Environmental Microbiology, Elsevier, 139–153. doi:10.1016/B978-0-12-394626-3.00007-7.
  100. Harrison, S., Franklin, J., Hernandez, R. R., Ikegami, M., Safford, H. D., and Thorne, J. H. (2024). Climate Change and California’s Terrestrial Biodiversity, Proceedings of the National Academy of Sciences, Vol. 121, No. 32. doi:10.1073/pnas.2310074121.
  101. Zhao, S., Huq, M. E., Fahad, S., Kamran, M., and Riaz, M. (2024). Boron Toxicity in Plants: Understanding Mechanisms and Developing Coping Strategies; a Review, Plant Cell Reports, Vol. 43, No. 10, 238. doi:10.1007/s00299-024-03317-5.
  102. Deborde, D. D. D., Papa, R. D. S., Duya, M. R. M., and Magbanua, F. S. (2023). Mt. Apo Biotic Index (MABI): A Macroinvertebrate-Based Multimetric Index for Assessing Stream Biotic Integrity of Wadeable Streams within a Geothermal Production Field in Mindanao, Philippines, Environmental Monitoring and Assessment, Vol. 195, No. 9, 1110. doi:10.1007/s10661-023-11743-3.
  103. Stoppa, G., Nuvolone, D., Petri, D., Centi, L., Nisticò, F., Crocetti, E., Barbone, F., and Voller, F. (2023). Exposure to Low Levels of Hydrogen Sulphide and Its Impact on Chronic Obstructive Pulmonary Disease and Lung Function in the Geothermal Area of Mt. Amiata in Italy: The Cross-Sectional InVETTA Study, PLOS ONE, Vol. 18, No. 11, e0293619. doi:10.1371/journal.pone.0293619.

Downloads

Published

2025-04-26

How to Cite

Idroes, G. M., Khairan, K., Suhartono, E., Prasetio, R., Idroes, G. M., & Suhendrayatna, S. (2025). Resilience and Adaptation: Plant Ecology in Indonesia’s Geothermal Environments. Leuser Journal of Environmental Studies, 3(1), 44–55. https://doi.org/10.60084/ljes.v3i1.294

Issue

Section

Articles