Geochemical Evidence from Major and Trace Elements in Geothermal Waters of Empat Lawang, Southern Sumatra: Clues to Mineralization and Hydrothermal Sources

Authors

  • Rofiqul Umam Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Center for Research in Radiation, Isotopes, and Earth System Sciences (CRiES), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
  • Suharno Suharno Department of Geophysical Engineering, Faculty of Engineering, University of Lampung, Bandar Lampung 35145, Lampung, Indonesia
  • Rahmad Junaidi Faculty of Science and Technology, Universitas Islam Negeri Sunan Ampel, Surabaya 60237, East Java, Indonesia

DOI:

https://doi.org/10.60084/ljes.v3i2.343

Keywords:

Geochemical evidence, Hydrothermal sources, Trace elements, Major elements, Geothermometry, Mineralization

Abstract

This study explores the major and trace element geochemistry of geothermal waters from Empat Lawang, Southern Sumatra, Indonesia, to assess hydrothermal origins and mineral prospecting potential. Five water samples were analyzed using ternary plots, ion correlation diagrams, and geothermometric equations. A strong Na–Cl correlation (R2 = 0.9694) suggests evaporite dissolution or mixing with connate water, while the Ca–SO4 relationship (R2 = 0.9555) indicates gypsum or anhydrite dissolution. The Ca + Mg vs. HCO3 pattern reflects carbonate and silicate weathering influenced by lithological variability. Diagnostic ion plots reveal active ion exchange and halite dissolution across sample sites. Reservoir temperatures estimated using Giggenbach and Fournier Truesdell equations range from 190°C to 404°C, with an outlier of 1593.75°C in PN3, likely due to fluid disequilibrium. Depths span 4.22 to 16.39 km, indicating deep-seated hydrothermal systems with intense fluid–rock interaction. The Cl/Li vs. B plot identifies hydrothermal signatures, with most samples below the Cl/Li < 1000 threshold and elevated boron levels, suggesting active leaching and mineral transport. These findings highlight the potential for borate and metal mineralization. By integrating classical geochemical approaches with modern trace element indicators, this study provides a novel framework for geothermal exploration in Indonesia’s volcanic regions. These findings suggest potential for borate and metal mineralization and offer a geochemical framework for geothermal exploration in Indonesia’s volcanic regions.

Downloads

Download data is not yet available.

References

  1. Hariyono, E., and S, L. (2018). The Characteristics of Volcanic Eruption in Indonesia, Volcanoes - Geological and Geophysical Setting, Theoretical Aspects and Numerical Modeling, Applications to Industry and Their Impact on the Human Health, No. July. doi:10.5772/intechopen.71449.
  2. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G, M., Marwan, M., and Mahlia, T, M, I. (2019). Geochemistry Exploration and Geothermometry, Energies MDPI, Vol. 12, No. 4442, 2–17.
  3. Bhat, M. A., Wani, S. A., Singh, V. K., Sahoo, J., Tomar, D., and Sanswal, R. (2018). Journal of Agricultural Science and An Overview of the Assessment of Groundwater Quality for Irrigation, Journal of Agricultural Science and Food Research, Vol. 9, No. 1, 1–9.
  4. Umam, R., Junaidi, R., Syazali, M., Farid, F., Saregar, A., and Andiyan, A. (2025). Optimization of Piper Trilinier Diagram Using Lithium Isotope Systematics : An Application for Detecting the Contribution of Geothermal Water from Aso Caldera after Earthquake 2016 in Kumamoto Aquifer , Japan, Indonesian Journal of Science & Technology, Vol. 10, No. 1, 159–170.
  5. Nawi, R., Sismanto, S., Triyana, K., and Harijoko, A. (2026). Lithium Enrichment in High Radiogenic Geothermal Systems Originating from Lithospheric Water Due to Water-Rock Interactions, Geothermics, Vol. 134, No. August 2025, 103499. doi:10.1016/j.geothermics.2025.103499.
  6. Iqbal, M., Kusumasari, B. A., Atmapradhana, T., Trinugraha, A. C., Palupi, E. K., and Maulidi, I. (2023). Characterization of Thermal Waters Origin from the Back Arc Lampung Province , Indonesia : An Evaluation of Stable Isotopes , Major Elements , and Li / Cl Ratios, International Journal of Hydrological and Environmental for Sustainability, Vol. 2, No. 1, 1–12.
  7. Umam, R., Cengiz, K., and Said, A. (2024). Application of Major and Trace Elements for Detecting the Origin of Groundwater : Lithium Enrichment in Ain Al-Harrah Hot Spring Influenced by Red Sea , Saudi Arabia, International Journal of Hydrological and Environmental for Sustainability, Vol. 3, No. 3, 151–162.
  8. Listyani, R. A. T.-, Prabowo, I. A., and De Jesus, A. A. (2023). Aquifer Potential Analysis Based On Hydrostratigraphy and Geological Lineament In Kokap Region, Kulon Progo, Yogyakarta, Indonesia, International Journal of Hydrological and Environmental for Sustainability, Vol. 2, No. 2, 50–64. doi:10.58524/ijhes.v2i2.197.
  9. Hendry, M. J., Wassenaar, L. I., and Kotzer, T. (2000). Chloride and Chlorine Isotopes (36Cl and Δ37Cl) as Tracers of Solute Migration in a Thick, Clay-Rich Aquitard System, Water Resources Research, Vol. 36, No. 1, 285–296. doi:10.1029/1999WR900278.
  10. Nazri, M. A. A., Tan, L. W., Kasmin, H., Syafalni, S., and Abustan, I. (2016). Geophysical and Hydrochemical Characteristics of Groundwater at Kerian Irrigation Scheme, IOP Conference Series: Materials Science and Engineering, Vol. 136, No. 1. doi:10.1088/1757-899X/136/1/012070.
  11. Umam, R., Tanimizu, M., Nakamura, H., Nishio, Y., Nakai, R., Sugimoto, N., Mori, Y., Kobayashi, Y., Ito, A., Wakaki, S., Nagaishi, K., and Ishikawa, T. (2022). Lithium Isotope Systematics of Arima Hot Spring Waters and Groundwaters in Kii Peninsula, GEOCHEMICAL JOURNAL, Vol. 56, No. 5, GJ22015. doi:10.2343/geochemj.GJ22015.
  12. Asadi, E., Isazadeh, M., Samadianfard, S., Ramli, M. F., Mosavi, A., Nabipour, N., Shamshirband, S., Hajnal, E., and Chau, K. W. (2020). Groundwater Quality Assessment for Sustainable Drinking and Irrigation, Sustainability (Switzerland), Vol. 12, No. 1, 1–13. doi:10.3390/su12010177.
  13. Umar Kura, N., Firuz Ramli, M., Azmin Sulaiman, W. N., Ibrahim, S., Zaharin Aris, A., and Mustapha, A. (2013). Evaluation of Factors Influencing the Groundwater Chemistry in a Small Tropical Island of Malaysia, International Journal of Environmental Research and Public Health, Vol. 10, No. 5, 1861–1881. doi:10.3390/ijerph10051861.
  14. Virgo, F., Karyanto, K., Mara, A., S, A., Wahyudi, Suharno, and Suryanto, W. (2012). Water Geochemical Analysis Within Penantian Geothermal Area In Water Geochemical Analysis Within Penantian Geothermal Area, The 12TH ANNUAL INDONESIAN GEOTHERMAL ASSOCIATION MEETING & CONFERENCE.
  15. Suharno, Virgo, F., and Wahyudi. (2013). Geothermal Study of the Airklinsar Geothermal Field Empat Lawang District , Sumatera Selatan Province , Indonesia, International Journal of Basic & Applied Sciences IJBAS-IJENS, Vol. 13, No. 03, 48–51.
  16. Mulyasari, R., Utama, H. W., and Haerudin, N. (2019). Geomorphology Study on the Bandar Lampung Capital City for Recommendation of Development Area, IOP Conference Series: Earth and Environmental Science, Vol. 279, No. 1. doi:10.1088/1755-1315/279/1/012026.
  17. Nakada, S., Maeno, F., Yoshimoto, M., Hokanishi, N., Shimano, T., Zaennudin, A., and Iguchi, M. (2019). Eruption Scenarios of Active Volcanoes in Indonesia, Journal of Disaster Research, Vol. 14, No. 1, 40–50. doi:10.20965/JDR.2019.P0040.
  18. Hanuš, V., Špičák, A., and Vaněk, J. (1996). Sumatran Segment of the Indonesian Subduction Zone: Morphology of the Wadati-Benioff Zone and Seismotectonic Pattern of the Continental Wedge, Journal of Southeast Asian Earth Sciences, Vol. 13, No. 1, 39–60. doi:10.1016/0743-9547(96)00004-9.
  19. Tongkul, F. (2017). Active Tectonics in Sabah – Seismicity and Active Faults, Bulletin of the Geological Society of Malaysia, Vol. 64, No. December, 27–36. doi:10.7186/bgsm64201703.
  20. Muthamilselvan, A., Rajasekaran, N., and Suresh, R. (2019). Mapping of Hard Rock Aquifer System and Artificial Recharge Zonation through Remote Sensing and GIS Approach in Parts of Perambalur District of Tamil Nadu, India, Journal of Groundwater Science and Engineering, Vol. 7, No. 3, 264–281. doi:10.19637/j.cnki.2305-7068.2019.03.007.
  21. Gede Boy Darmawan, I., Donny Setijadji, L., and Wintolo, D. (2015). Geology and Geothermal System in Rajabasa Volcano South Lampung Regency, Indonesia (Approach to Field Observations, Water Geochemistry and Magnetic Methods), Proceedings World Geothermal Congress, No. June, 19–25.
  22. Jihad, A., Muksin, U., Syamsidik, and Ramli, M. (2021). Earthquake Relocation to Understand the Megathrust Segments along the Sumatran Subduction Zone, IOP Conference Series: Earth and Environmental Science, Vol. 630, 012002. doi:10.1088/1755-1315/630/1/012002.
  23. Siringoringo, L. P., Sapiie, B., Rudyawan, A., and Sucipta, I. G. B. E. (2024). Origin of High Heat Flow in the Back-Arc Basins of Sumatra: An Opportunity for Geothermal Energy Development, Energy Geoscience, Vol. 5, No. 3, 100289. doi:10.1016/j.engeos.2024.100289.
  24. Nukman, M., and Hochstein, M. P. (2019). The Sipoholon Geothermal Field and Adjacent Geothermal Systems along the North-Central Sumatra Fault Belt, Indonesia: Reviews on Geochemistry, Tectonics, and Natural Heat Loss, Journal of Asian Earth Sciences, Vol. 170, No. October 2018, 316–328. doi:10.1016/j.jseaes.2018.11.007.
  25. Hochstein, M. P., and Sudarman, S. (1993). Geothermal Resources of Sumatra, Geothermics, Vol. 22, No. 3, 181–200. doi:10.1016/0375-6505(93)90042-L.
  26. Grysen, T., Gibson, D., and Nicholson, K. (2016). Geothermal Heat Flow Map of Sumatra, Indonesia, Geological Society of America.
  27. Liu, S., Suardi, I., Xu, X., Yang, S., and Tong, P. (2021). The Geometry of the Subducted Slab Beneath Sumatra Revealed by Regional and Teleseismic Traveltime Tomography, Journal of Geophysical Research: Solid Earth, Vol. 126, No. 1, 1–29. doi:10.1029/2020JB020169.
  28. Nishimura, S., Nishida, J., Yokoyama, T., and Hehuwat, F. (1986). Neo-Tectonics of the Strait of Sunda, Indonesia, Journal of Southeast Asian Earth Sciences, Vol. 1, No. 2, 81–91. doi:10.1016/0743-9547(86)90023-1.
  29. Metcalfe, I. (2011). Tectonic Framework and Phanerozoic Evolution of Sundaland, Gondwana Research, Vol. 19, No. 1, 3–21. doi:10.1016/j.gr.2010.02.016.
  30. Giggenbach, W. F. (1988). Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators, Geochimica et Cosmochimica Acta, Vol. 52, No. 12, 2749–2765. doi:10.1016/0016-7037(88)90143-3.
  31. Fournier, R. O., and Truesdell, A. H. (1973). An Empirical NaKCa Geothermometer for Natural Waters, Geochimica et Cosmochimica Acta, Vol. 37, No. 5, 1255–1275. doi:10.1016/0016-7037(73)90060-4.
  32. Arrofi, D., Abu-Mahfouz, I. S., and Prayudi, S. D. (2024). Lithium Enrichment in High-Enthalpy Geothermal System Influenced by Seawater, Indonesia, Scientific Reports, Vol. 14, No. 1, 24093. doi:10.1038/s41598-024-74462-w.
  33. Oi, T., Ogino, H., Hosoe, M., and Kakihana, H. (1992). Fractionation of Strontium Isotopes in Cation-Exchange Chromatography, Separation Science and Technology, Vol. 27, No. 5, 631–643. doi:10.1080/01496399208018907.
  34. Singh, K. K., Tewari, G., and Kumar, S. (2020). Evaluation of Groundwater Quality for Suitability of Irrigation Purposes: A Case Study in the Udham Singh Nagar, Uttarakhand, Journal of Chemistry, Vol. 2020. doi:10.1155/2020/6924026.
  35. Luo, W., Gao, X., and Zhang, X. (2018). Geochemical Processes Controlling the Groundwater Chemistry and Fluoride Contamination in the Yuncheng Basin, China—an Area with Complex Hydrogeochemical Conditions, PLoS ONE, Vol. 13, No. 7, 1–25. doi:10.1371/journal.pone.0199082.
  36. Kazahaya, K., Takahashi, M., Yasuhara, M., Nishio, Y., Inamura, A., Morikawa, N., Sato, T., Takahashi, H. A., Kitaoka, K., Ohsawa, S., Oyama, Y., Ohwada, M., Tsukamoto, H., Horiguchi, K., Tosaki, Y., and Kirita, T. (2014). 西南日本におけるスラブ起源深部流体の分布と特徴, 日本水文科学会誌, Vol. 44, No. 1, 3–16. doi:10.4145/jahs.44.3.
  37. Adachi, I., and Yamanaka, T. (2024). Isotopic Evolutionary Track of Water Due to Interaction with Rocks and Its Use for Tracing Water Cycle through the Lithosphere, Journal of Hydrology, Vol. 628, 130589. doi:10.1016/j.jhydrol.2023.130589.
  38. Yamanaka, T., and Adachi, I. (2024). Hot Springs Reflect the Flooding of Slab-Derived Water as a Trigger of Earthquakes, Communications Earth and Environment, Vol. 5, No. 1, 1–8. doi:10.1038/s43247-024-01606-1.
  39. Hosono, T., Yamada, C., Manga, M., Wang, C. Y., and Tanimizu, M. (2020). Stable Isotopes Show That Earthquakes Enhance Permeability and Release Water from Mountains, Nature Communications, Vol. 11, No. 1, 1–9. doi:10.1038/s41467-020-16604-y.
  40. Boschetti, T., Toscani, L., and Salvioli Mariani, E. (2015). Boron Isotope Geochemistry of Na-Bicarbonate, Na-Chloride, and Ca-Chloride Waters from the Northern Apennine Foredeep Basin: Other Pieces of the Sedimentary Basin Puzzle, Geofluids, Vol. 15, No. 4, 546–562. doi:10.1111/gfl.12124.
  41. Huang, F., and Korai, S. K. (2025). B-Li-Cl Trend Line Can Distinguish The Dominance of Hydrothermal Water and Surface Water : A Case Study of Geothermal in Tengchong , Southwestern China, International Journal of Hydrological and Environmental for Sustainability, Vol. 4, No. 1, 42–54.
  42. Haerudin, N., Fitriawan, H., Siska, D., and Farid, M. (2019). Earthquake Disaster Mitigation Mapping By Modeling Of Land Layer And Site Effect Zone, Jurnal Ilmiah Pendidikan Fisika Al-Biruni, Vol. 08, No. 1, 53–67. doi:10.24042/jipfalbiruni.v8i1.3705.
  43. Prastowo, R., Huda, S., Umam, R., Jermsittiparsert, K., Prasetiyo, A. E., Tortop, H. S., and Syazali, M. (2019). Academic Achievement and Conceptual Understanding of Electrodynamics: Applications Geoelectric Using Cooperative Learning Model, Jurnal Ilmiah Pendidikan Fisika Al-Biruni, Vol. 8, No. 2, 165–175. doi:10.24042/jipfalbiruni.v0i0.4614.

Downloads

Published

2025-10-20

How to Cite

Umam, R., Suharno, S., & Junaidi, R. (2025). Geochemical Evidence from Major and Trace Elements in Geothermal Waters of Empat Lawang, Southern Sumatra: Clues to Mineralization and Hydrothermal Sources. Leuser Journal of Environmental Studies, 3(2), 87–98. https://doi.org/10.60084/ljes.v3i2.343