TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection
DOI:
https://doi.org/10.60084/ljes.v1i1.42Keywords:
Convolutional neural network, Deep learning, Forest fire detection, ResNet50V2Abstract
Forest fires have emerged as a significant threat to the environment, wildlife, and human lives, necessitating the development of effective early detection systems for firefighting and mitigation efforts. In this study, we introduce TeutongNet, a modified ResNet50V2 model designed to detect forest fires accurately. The model is trained on a curated dataset and evaluated using various metrics. Results show that TeutongNet achieves high accuracy (98.68%) with low false positive and false negative rates. The model's performance is further supported by the ROC curve analysis, which indicates a high degree of accuracy in classifying fire and non-fire images. TeutongNet demonstrates its effectiveness in reliable forest fire detection, providing valuable insights for improved fire management strategies.
Downloads
References
- Flannigan, M. ., Stocks, B. ., Wotton, B. . (2000). Climate change and forest fires, Science of The Total Environment, Vol. 262, No. 3, 221–229. doi:10.1016/S0048-9697(00)00524-6
- de Andrade, R. B., Barlow, J., Louzada, J., Vaz-de-Mello, F. Z., Silveira, J. M., Cochrane, M. A. (2014). Tropical forest fires and biodiversity: dung beetle community and biomass responses in a northern Brazilian Amazon forest, Journal of Insect Conservation, Vol. 18, 1097–1104
- Nasi, R., Dennis, R., Meijaard, E., Applegate, G., Moore, P. (2002). Forest fire and biological diversity, UNASYLVA-FAO-, 36–40
- Mataix-Solera, J., Guerrero, C., García-Orenes, F., Bárcenas, G. M., Torres, M. P. (2009). Forest fire effects on soil microbiology, Fire Effects on Soils and Restoration Strategies, CRC press, 149–192
- Verma, S., Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review, Proceedings of the International Academy of Ecology and Environmental Sciences, Vol. 2, No. 3, 168
- Nolan, R. H., Bowman, D. M. J. S., Clarke, H., Haynes, K., Ooi, M. K. J., Price, O. F., Williamson, G. J., Whittaker, J., Bedward, M., Boer, M. M., Cavanagh, V. I., Collins, L., Gibson, R. K., Griebel, A., Jenkins, M. E., Keith, D. A., Mcilwee, A. P., Penman, T. D., Samson, S. A., Tozer, M. G., Bradstock, R. A. (2021). What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?, Fire, Vol. 4, No. 4, 97. doi:10.3390/fire4040097
- Boer, M. M., Resco de Dios, V., Bradstock, R. A. (2020). Unprecedented burn area of Australian mega forest fires, Nature Climate Change, Vol. 10, No. 3, 171–172. doi:10.1038/s41558-020-0716-1
- Kemter, M., Fischer, M., Luna, L. V., Schönfeldt, E., Vogel, J., Banerjee, A., Korup, O., Thonicke, K. (2021). Cascading Hazards in the Aftermath of Australia’s 2019/2020 Black Summer Wildfires, Earth’s Future, Vol. 9, No. 3. doi:10.1029/2020EF001884
- Dickman, C. R. (2021). Ecological consequences of Australia’s “Black Summer” bushfires: Managing for recovery, Integrated Environmental Assessment and Management, Vol. 17, No. 6, 1162–1167. doi:10.1002/ieam.4496
- Martell, D. L. (n.d.). Forest Fire Management, Handbook Of Operations Research In Natural Resources, Springer US, Boston, MA, 489–509. doi:10.1007/978-0-387-71815-6_26
- Benzekri, W., El Moussati, A., Moussaoui, O., Berrajaa, M. (2020). Early forest fire detection system using wireless sensor network and deep learning, International Journal of Advanced Computer Science and Applications, Vol. 11, No. 5
- Khan, S., Khan, A. (2022). FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities, Symmetry, Vol. 14, No. 10, 2155. doi:10.3390/sym14102155
- Sun, X., Sun, L., Huang, Y. (2021). Forest fire smoke recognition based on convolutional neural network, Journal of Forestry Research, Vol. 32, No. 5, 1921–1927. doi:10.1007/s11676-020-01230-7
- Govil, K., Welch, M. L., Ball, J. T., Pennypacker, C. R. (2020). Preliminary Results from a Wildfire Detection System Using Deep Learning on Remote Camera Images, Remote Sensing, Vol. 12, No. 1, 166. doi:10.3390/rs12010166
- Seydi, S. T., Saeidi, V., Kalantar, B., Ueda, N., Halin, A. A. (2022). Fire-Net: A Deep Learning Framework for Active Forest Fire Detection, Journal of Sensors, Vol. 2022, 1–14. doi:10.1155/2022/8044390
- Abdusalomov, A. B., Islam, B. M. S., Nasimov, R., Mukhiddinov, M., Whangbo, T. K. (2023). An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach, Sensors, Vol. 23, No. 3, 1512. doi:10.3390/s23031512
- He, K., Zhang, X., Ren, S., Sun, J. (2016). Identity Mappings in Deep Residual Networks. doi:10.48550/arXiv.1603.05027
- Florez, R., Palomino-Quispe, F., Coaquira-Castillo, R. J., Herrera-Levano, J. C., Paixão, T., Alvarez, A. B. (2023). A CNN-Based Approach for the Driver Drowsiness Detection by Real-Time Eye State Identification
- Talukder, M. A., Islam, M. M., Uddin, M. A., Akhter, A., Pramanik, M. A. J., Aryal, S., Almoyad, M. A. A., Hasan, K. F., Moni, M. A. (2023). An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning, Expert Systems with Applications, Vol. 230, 120534. doi:10.1016/j.eswa.2023.120534
- Too, E. C., Yujian, L., Njuki, S., Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification, Computers and Electronics in Agriculture, Vol. 161, 272–279
- Haruna, U., Ali, R., Man, M. (2023). A new modification CNN using VGG19 and ResNet50V2 for classification of COVID-19 from X-ray radiograph images, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 31, No. 1, 369–377
- Khan, A., Hassan, B., Khan, S., Ahmed, R., Abuassba, A. (2022). DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for Forest Fire Detection, Mobile Information Systems, Vol. 2022, 1–14. doi:10.1155/2022/5358359
- Prusty, S., Patnaik, S., Dash, S. K. (2022). ResNet50V2: A Transfer Learning Model to Predict Pneumonia with chest X-ray images, 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS), IEEE, 208–213. doi:10.1109/MLCSS57186.2022.00046
- Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–20. doi:10.1109/TPAMI.2023.3250241
- Kumar, R. L., Kakarla, J., Isunuri, B. V., Singh, M. (2021). Multi-class brain tumor classification using residual network and global average pooling, Multimedia Tools and Applications, Vol. 80, No. 9, 13429–13438. doi:10.1007/s11042-020-10335-4
- Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, Vol. 15, No. 1, 1929–1958
- Noviandy, T. R., Maulana, A., Emran, T. B, Idroes, G. M., Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12
- Islam, M. M., Tasnim, N., Baek, J.-H. (2020). Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks, Inventions, Vol. 5, No. 2, 16. doi:10.3390/inventions5020016
- Sousa, M. J., Moutinho, A., Almeida, M. (2020). Wildfire detection using transfer learning on augmented datasets, Expert Systems with Applications, Vol. 142, 112975. doi:10.1016/j.eswa.2019.112975
- Tang, Y., Feng, H., Chen, J., Chen, Y. (2021). ForestResNet: A Deep Learning Algorithm for Forest Image Classification, Journal of Physics: Conference Series, Vol. 2024, No. 1, 012053. doi:10.1088/1742-6596/2024/1/012053
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ghazi Mauer Idroes, Aga Maulana, Rivansyah Suhendra , Andi Lala, Taufiq Karma, Fitranto Kusumo, Yuni Tri Hewindati, Teuku Rizky Noviandy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















