TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection

Authors

  • Ghazi Mauer Idroes Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Aga Maulana Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Rivansyah Suhendra Department of Information Technology, Faculty of Engineering, Universitas Teuku Umar, Aceh Barat 23681, Indonesia
  • Andi Lala School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Taufiq Karma Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Fitranto Kusumo Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo 2007 NSW Australia
  • Yuni Tri Hewindati Department of Natural Sciences, Faculty of Science and Technology, Universitas Terbuka, Tangerang Selatan 15437, Indonesia
  • Teuku Rizky Noviandy Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/ljes.v1i1.42

Keywords:

Convolutional neural network, Deep learning, Forest fire detection, ResNet50V2

Abstract

Forest fires have emerged as a significant threat to the environment, wildlife, and human lives, necessitating the development of effective early detection systems for firefighting and mitigation efforts. In this study, we introduce TeutongNet, a modified ResNet50V2 model designed to detect forest fires accurately. The model is trained on a curated dataset and evaluated using various metrics. Results show that TeutongNet achieves high accuracy (98.68%) with low false positive and false negative rates. The model's performance is further supported by the ROC curve analysis, which indicates a high degree of accuracy in classifying fire and non-fire images. TeutongNet demonstrates its effectiveness in reliable forest fire detection, providing valuable insights for improved fire management strategies.

Downloads

Download data is not yet available.

References

  1. Flannigan, M. ., Stocks, B. ., Wotton, B. . (2000). Climate change and forest fires, Science of The Total Environment, Vol. 262, No. 3, 221–229. doi:10.1016/S0048-9697(00)00524-6
  2. de Andrade, R. B., Barlow, J., Louzada, J., Vaz-de-Mello, F. Z., Silveira, J. M., Cochrane, M. A. (2014). Tropical forest fires and biodiversity: dung beetle community and biomass responses in a northern Brazilian Amazon forest, Journal of Insect Conservation, Vol. 18, 1097–1104
  3. Nasi, R., Dennis, R., Meijaard, E., Applegate, G., Moore, P. (2002). Forest fire and biological diversity, UNASYLVA-FAO-, 36–40
  4. Mataix-Solera, J., Guerrero, C., García-Orenes, F., Bárcenas, G. M., Torres, M. P. (2009). Forest fire effects on soil microbiology, Fire Effects on Soils and Restoration Strategies, CRC press, 149–192
  5. Verma, S., Jayakumar, S. (2012). Impact of forest fire on physical, chemical and biological properties of soil: A review, Proceedings of the International Academy of Ecology and Environmental Sciences, Vol. 2, No. 3, 168
  6. Nolan, R. H., Bowman, D. M. J. S., Clarke, H., Haynes, K., Ooi, M. K. J., Price, O. F., Williamson, G. J., Whittaker, J., Bedward, M., Boer, M. M., Cavanagh, V. I., Collins, L., Gibson, R. K., Griebel, A., Jenkins, M. E., Keith, D. A., Mcilwee, A. P., Penman, T. D., Samson, S. A., Tozer, M. G., Bradstock, R. A. (2021). What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?, Fire, Vol. 4, No. 4, 97. doi:10.3390/fire4040097
  7. Boer, M. M., Resco de Dios, V., Bradstock, R. A. (2020). Unprecedented burn area of Australian mega forest fires, Nature Climate Change, Vol. 10, No. 3, 171–172. doi:10.1038/s41558-020-0716-1
  8. Kemter, M., Fischer, M., Luna, L. V., Schönfeldt, E., Vogel, J., Banerjee, A., Korup, O., Thonicke, K. (2021). Cascading Hazards in the Aftermath of Australia’s 2019/2020 Black Summer Wildfires, Earth’s Future, Vol. 9, No. 3. doi:10.1029/2020EF001884
  9. Dickman, C. R. (2021). Ecological consequences of Australia’s “Black Summer” bushfires: Managing for recovery, Integrated Environmental Assessment and Management, Vol. 17, No. 6, 1162–1167. doi:10.1002/ieam.4496
  10. Martell, D. L. (n.d.). Forest Fire Management, Handbook Of Operations Research In Natural Resources, Springer US, Boston, MA, 489–509. doi:10.1007/978-0-387-71815-6_26
  11. Benzekri, W., El Moussati, A., Moussaoui, O., Berrajaa, M. (2020). Early forest fire detection system using wireless sensor network and deep learning, International Journal of Advanced Computer Science and Applications, Vol. 11, No. 5
  12. Khan, S., Khan, A. (2022). FFireNet: Deep Learning Based Forest Fire Classification and Detection in Smart Cities, Symmetry, Vol. 14, No. 10, 2155. doi:10.3390/sym14102155
  13. Sun, X., Sun, L., Huang, Y. (2021). Forest fire smoke recognition based on convolutional neural network, Journal of Forestry Research, Vol. 32, No. 5, 1921–1927. doi:10.1007/s11676-020-01230-7
  14. Govil, K., Welch, M. L., Ball, J. T., Pennypacker, C. R. (2020). Preliminary Results from a Wildfire Detection System Using Deep Learning on Remote Camera Images, Remote Sensing, Vol. 12, No. 1, 166. doi:10.3390/rs12010166
  15. Seydi, S. T., Saeidi, V., Kalantar, B., Ueda, N., Halin, A. A. (2022). Fire-Net: A Deep Learning Framework for Active Forest Fire Detection, Journal of Sensors, Vol. 2022, 1–14. doi:10.1155/2022/8044390
  16. Abdusalomov, A. B., Islam, B. M. S., Nasimov, R., Mukhiddinov, M., Whangbo, T. K. (2023). An Improved Forest Fire Detection Method Based on the Detectron2 Model and a Deep Learning Approach, Sensors, Vol. 23, No. 3, 1512. doi:10.3390/s23031512
  17. He, K., Zhang, X., Ren, S., Sun, J. (2016). Identity Mappings in Deep Residual Networks. doi:10.48550/arXiv.1603.05027
  18. Florez, R., Palomino-Quispe, F., Coaquira-Castillo, R. J., Herrera-Levano, J. C., Paixão, T., Alvarez, A. B. (2023). A CNN-Based Approach for the Driver Drowsiness Detection by Real-Time Eye State Identification
  19. Talukder, M. A., Islam, M. M., Uddin, M. A., Akhter, A., Pramanik, M. A. J., Aryal, S., Almoyad, M. A. A., Hasan, K. F., Moni, M. A. (2023). An efficient deep learning model to categorize brain tumor using reconstruction and fine-tuning, Expert Systems with Applications, Vol. 230, 120534. doi:10.1016/j.eswa.2023.120534
  20. Too, E. C., Yujian, L., Njuki, S., Yingchun, L. (2019). A comparative study of fine-tuning deep learning models for plant disease identification, Computers and Electronics in Agriculture, Vol. 161, 272–279
  21. Haruna, U., Ali, R., Man, M. (2023). A new modification CNN using VGG19 and ResNet50V2 for classification of COVID-19 from X-ray radiograph images, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 31, No. 1, 369–377
  22. Khan, A., Hassan, B., Khan, S., Ahmed, R., Abuassba, A. (2022). DeepFire: A Novel Dataset and Deep Transfer Learning Benchmark for Forest Fire Detection, Mobile Information Systems, Vol. 2022, 1–14. doi:10.1155/2022/5358359
  23. Prusty, S., Patnaik, S., Dash, S. K. (2022). ResNet50V2: A Transfer Learning Model to Predict Pneumonia with chest X-ray images, 2022 International Conference on Machine Learning, Computer Systems and Security (MLCSS), IEEE, 208–213. doi:10.1109/MLCSS57186.2022.00046
  24. Huang, L., Qin, J., Zhou, Y., Zhu, F., Liu, L., Shao, L. (2023). Normalization Techniques in Training DNNs: Methodology, Analysis and Application, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1–20. doi:10.1109/TPAMI.2023.3250241
  25. Kumar, R. L., Kakarla, J., Isunuri, B. V., Singh, M. (2021). Multi-class brain tumor classification using residual network and global average pooling, Multimedia Tools and Applications, Vol. 80, No. 9, 13429–13438. doi:10.1007/s11042-020-10335-4
  26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting, The Journal of Machine Learning Research, Vol. 15, No. 1, 1929–1958
  27. Noviandy, T. R., Maulana, A., Emran, T. B, Idroes, G. M., Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12
  28. Islam, M. M., Tasnim, N., Baek, J.-H. (2020). Human Gender Classification Using Transfer Learning via Pareto Frontier CNN Networks, Inventions, Vol. 5, No. 2, 16. doi:10.3390/inventions5020016
  29. Sousa, M. J., Moutinho, A., Almeida, M. (2020). Wildfire detection using transfer learning on augmented datasets, Expert Systems with Applications, Vol. 142, 112975. doi:10.1016/j.eswa.2019.112975
  30. Tang, Y., Feng, H., Chen, J., Chen, Y. (2021). ForestResNet: A Deep Learning Algorithm for Forest Image Classification, Journal of Physics: Conference Series, Vol. 2024, No. 1, 012053. doi:10.1088/1742-6596/2024/1/012053

Downloads

Published

2023-06-22

How to Cite

Idroes, G. M., Maulana, A., Suhendra , R., Lala, A., Karma, T., Kusumo, F., Hewindati, Y. T., & Noviandy, T. R. (2023). TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection. Leuser Journal of Environmental Studies, 1(1), 1–8. https://doi.org/10.60084/ljes.v1i1.42

Issue

Section

Articles