A Comprehensive Network Pharmacology Study on the Diabetes-Fighting Capabilities of Yacon Leaf Extract

Authors

  • Arsianita Ester Wawo Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
  • Herny Emma Inonta Simbala Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
  • Fatimawali Fatimawali Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
  • Trina Ekawati Tallei Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia; Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado, Indonesia

DOI:

https://doi.org/10.60084/mp.v2i2.161

Keywords:

Smallanthus sonchifolius, Diabetes Mellitus Type 2, Protein target, Network pharmacology

Abstract

Indonesia ranks fourth in the world for the number of diabetes mellitus (DM) sufferers. DM is a group of metabolic disorders characterized by hyperglycemia due to insulin abnormalities. This research employs Network Pharmacology analysis to examine the target proteins and pharmacological network profiles predicted to be influenced by compounds in the leaves of Smallanthus sonchifolius (yacon) for their anti-diabetic effects. Gas chromatography-mass spectrometry (GC-MS) identified 41 secondary metabolite compounds in yacon leaves, seven of which have a Pa value > 0.5. Compound C28 has the highest Pa value as an insulin promoter, at 0.662. A total of 129 target proteins were found for the secondary metabolite compounds in yacon leaves, and 5,112 target proteins were identified for Type 2 Diabetes Mellitus (T2DM). The intersection analysis between yacon leaves and T2DM revealed 32 common proteins. Network analysis highlighted 10 top proteins: ESR1, PPAR-α, HMGCR, CYP19A1, PPARD, PTP1N, GRIN2B, FYN, AR, and SHBG. Among these, PPAR-α shows great potential and promising prospects as a target for further exploration. Considering several parameters, it can be concluded that PPAR-α is a promising protein and a potential target for new drug candidates for T2DM.

Downloads

Download data is not yet available.

References

  1. Padilla-González, G. F., Frey, M., Gómez-Zeledón, J., Da Costa, F. B., and Spring, O. (2019). Metabolomic and Gene Expression Approaches Reveal the Developmental and Environmental Regulation of the Secondary Metabolism of Yacón (Smallanthus sonchifolius, Asteraceae), Scientific Reports, Vol. 9, No. 1, 13178. doi:10.1038/s41598-019-49246-2.
  2. Santos, K. C. dos, Bueno, B. G., Pereira, L. F., Francisqueti, F. V., Braz, M. G., Bincoleto, L. F., Silva, L. X. da, Ferreira, A. L. A., Nakamune, A. C. de M. S., Chen, C.-Y. O., Blumberg, J. B., and Corrêa, C. R. (2017). Yacon ( Smallanthus sonchifolius ) Leaf Extract Attenuates Hyperglycemia and Skeletal Muscle Oxidative Stress and Inflammation in Diabetic Rats, Evidence-Based Complementary and Alternative Medicine, Vol. 2017, 1–9. doi:10.1155/2017/6418048.
  3. Ismed, Y. (2021). Effectiveness of Insulin plant in Management of Diabetes Mellitus, Eureka Herba Indonesia, Vol. 3, No. 1, 135–139. doi:10.37275/ehi.v3i1.45.
  4. Aziz, Z., Al Qisthi, F. H., Djamil, R., Yuliana, N. D., Simanjuntak, P., and Abdillah, S. (2019). Identification of α-Glucosidase Enzyme Inhibitor Compound from Ethanol 96% Extract of Yakon Leaves (Smallanthus sonchifolius [Poepp. & Endl.] H. Robinson), Jurnal Ilmu Kefarmasian Indonesia, Vol. 17, No. 1, 21–26.
  5. Niazi, P., and Monib, A. W. (2024). The Role of Plants in Traditional and Modern Medicine, Journal of Pharmacognosy and Phytochemistry, Vol. 13, No. 2, 643–647. doi:10.22271/phyto.2024.v13.i2d.14905.
  6. Malino, A. P., Kepel, B. J., Budiarso, F. D. H., Fatimawali, F., Manampiring, A. E., and Bodhi, W. (2024). In Vitro Test of Antioxidant Activity of Leilem Leaf Ethanol Extract (Clerodendrum minahassae) Using DPPH and FRAP Methods, Heca Journal of Applied Sciences, Vol. 2, No. 1, 27–34. doi:10.60084/hjas.v2i1.135.
  7. Imelda, E., Fitria, U., Mutia, U. P., Syahrul, S., Sari, M. D., Adev, S. M., Adev, A. M., Zakiaturrahmi, Z., and Toshniwal, N. S. (2023). Hippobroma longiflora L Leaves as a Natural Inhibitor of Cataract Progression: A Comprehensive Study Integrating Ethanol Extract, HPLC, and Molecular Docking Approaches, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 2, 40–51. doi:10.61975/gjset.v1i2.10.
  8. Tokhirovna, E. G. (2023). Study of Clinical Characteristics of Patients with Type 2 Diabetes Mellitus in Middle and Old Age, Journal of Science in Medicine and Life, Vol. 1, No. 4, 16–19.
  9. Pendong, C. H. A., Suoth, E. J., Fatimawali, F., and Tallei, T. E. (2024). Network Pharmacology Approach to Understanding the Antidiabetic Effects of Pineapple Peel Hexane Extract, Malacca Pharmaceutics, Vol. 2, No. 1, 24–32. doi:10.60084/mp.v2i1.162.
  10. Utami, N., Susilowati, S., Angelia, P. T., and Paramesti, N. A. (2023). Profil Senyawa Metabolit Sekunder Ekstrak Daun Landep (Barleria prionitis L.) sebagai Kandidat Antidiabetes dengan Variasi Metode Ekstraksi, Jurnal Farmasetis, Vol. 12, No. 4, 431–440.
  11. Novianti, H., Safitri, Y. I., and Munjidah, A. (2022). Hubungan Macam Rujukan Kegawatdaruratan Dengan Keluaran Maternal Neonatal Dalam Masa Pandemi Covid-19, Jurnal Keperawatan Dan Kesehatan Masyarakat Cendekia Utama, Vol. 11, No. 1, 65–70.
  12. Erda, R., Novitri, W., Gemini, S., and Yunaspi, D. (2021). Hubungan Dukungan Keluarga Dengan Tingkat Kecemasan Pada Penderita Diabetes Mellitus, Jurnal Kesehatan Mercusuar, Vol. 4, No. 2, 82–86. doi:10.36984/jkm.v4i2.250.
  13. Maulana, A., Faisal, F. R., Noviandy, T. R., Rizkia, T., Idroes, G. M., Tallei, T. E., El-Shazly, M., and Idroes, R. (2023). Machine Learning Approach for Diabetes Detection Using Fine-Tuned XGBoost Algorithm, Infolitika Journal of Data Science, Vol. 1, No. 1, 1–7. doi:10.60084/ijds.v1i1.72.
  14. Al-Ozairi, A., Taghadom, E., Irshad, M., and Al-Ozairi, E. (2023). Association Between Depression, Diabetes Self-Care Activity and Glycemic Control in an Arab Population with Type 2 Diabetes, Diabetes, Metabolic Syndrome and Obesity, Vol. Volume 16, 321–329. doi:10.2147/DMSO.S377166.
  15. Novitasari, D. I. (2022). Characteristics of Patients with Diabetes Mellitus Type 2 That Was Hospitalized in Patar Asih Hospital Deli Serdang Regency, Jambura Journal of Health Sciences and Research, Vol. 4, No. 3, 677–690. doi:10.35971/jjhsr.v4i3.12522.
  16. Qin, T., Wu, L., Hua, Q., Song, Z., Pan, Y., and Liu, T. (2020). Prediction of the Mechanisms of Action of Shenkang in Chronic Kidney Disease: A Network Pharmacology Study and Experimental Validation, Journal of Ethnopharmacology, Vol. 246, 112128. doi:10.1016/j.jep.2019.112128.
  17. Demeshko, O. V, Krivoruchko, E. V, Samoilova, V. A., and Romanova, S. V. (2018). Gas Chromatography-Mass Spectrometry Study of the Root and Herb of Smallanthus sonchifolius, Ceska a Slovenska Farmacie : Casopis Ceske Farmaceuticke Spolecnosti a Slovenske Farmaceuticke Spolecnosti, Vol. 67, No. 4, 160–163.
  18. Daina, A., and Zoete, V. (2016). A BOILED‐Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules, ChemMedChem, Vol. 11, No. 11, 1117–1121. doi:10.1002/cmdc.201600182.
  19. Fatimawali, Tallei, T. E., Kepel, B. J., Bodhi, W., Manampiring, A. E., and Nainu, F. (2023). Molecular Insight into the Pharmacological Potential of Clerodendrum minahassae Leaf Extract for Type-2 Diabetes Management Using the Network Pharmacology Approach, Medicina, Vol. 59, No. 11, 1899. doi:10.3390/medicina59111899.
  20. Raihan, A., Illahi, A. K., Rokhimah, S., Elisa, T. P. P., and Maliza, R. (2023). Identification of Bioactive Solutions of Corn Silk (Zea mays L.) Extract and Biological Activity Test By Bioinformatics, Jurnal Biologi Tropis, Vol. 23, No. 1, 245–250. doi:10.29303/jbt.v23i1.5846.
  21. Dong, J., Wang, N.-N., Yao, Z.-J., Zhang, L., Cheng, Y., Ouyang, D., Lu, A.-P., and Cao, D.-S. (2018). ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database, Journal of Cheminformatics, Vol. 10, No. 1, 29. doi:10.1186/s13321-018-0283-x.
  22. Xiong, G., Wu, Z., Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., and Cao, D. (2021). ADMETlab 2.0: An Integrated Online Platform for Accurate and Comprehensive Predictions of ADMET Properties, Nucleic Acids Research, Vol. 49, No. W1, W5–W14. doi:10.1093/nar/gkab255.
  23. Gholam, G. M., and Artika, I. M. (2023). Potensi Terbentuk Interaksi Molekuler Pada Fitokimia Alami Sebagai Inhibitor SAP 2 Candida Albicans: Pendekatan In Silico, Jurnal Farmasi Udayana, Vol. 11, No. 2, 54–62.
  24. Stergiopoulou, D., Markou, A., Strati, A., Zavridou, M., Tzanikou, E., Mastoraki, S., Kallergi, G., Georgoulias, V., and Lianidou, E. (2023). Comprehensive Liquid Biopsy Analysis as a Tool for the Early Detection of Minimal Residual Disease in Breast Cancer, Scientific Reports, Vol. 13, No. 1, 1258. doi:10.1038/s41598-022-25400-1.
  25. Zhao, L., Fan, X., Zuo, L., Guo, Q., Su, X., Xi, G., Zhang, Z., Zhang, J., and Zheng, G. (2018). Estrogen Receptor 1 Gene Polymorphisms Are Associated with Metabolic Syndrome in Postmenopausal Women in China, BMC Endocrine Disorders, Vol. 18, No. 1, 65. doi:10.1186/s12902-018-0289-4.
  26. Leonardini, A., Laviola, L., Perrini, S., Natalicchio, A., and Giorgino, F. (2009). Cross-Talk between PPARγ and Insulin Signaling and Modulation of Insulin Sensitivity, PPAR Research, Vol. 2009, 1–12. doi:10.1155/2009/818945.
  27. Luo, R., Su, L.-Y., Li, G., Yang, J., Liu, Q., Yang, L.-X., Zhang, D.-F., Zhou, H., Xu, M., Fan, Y., Li, J., and Yao, Y.-G. (2020). Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model, Autophagy, Vol. 16, No. 1, 52–69. doi:10.1080/15548627.2019.1596488.
  28. Bare, Y., Helvina, M., Elizabeth, A., and Sari, D. T. (2019). The Potential Role of Caffeic Acid as Simultan Peroxixme proliferator-activated receptor gamma (PPAR-γ) Gene In Silico Study, Jurnal Saintek Lahan Kering, Vol. 2, Nos. 2 SE-Original research article. doi:10.32938/slk.v2i2.866.
  29. Noor, F., Asif, M., Ashfaq, U. A., Qasim, M., and Tahir ul Qamar, M. (2023). Machine Learning for Synergistic Network Pharmacology: A Comprehensive Overview, Briefings in Bioinformatics, Vol. 24, No. 3. doi:10.1093/bib/bbad120.

Downloads

Published

2024-06-19

How to Cite

Wawo, A. E., Simbala, H. E. I., Fatimawali, F., & Tallei, T. E. (2024). A Comprehensive Network Pharmacology Study on the Diabetes-Fighting Capabilities of Yacon Leaf Extract. Malacca Pharmaceutics, 2(2), 41–51. https://doi.org/10.60084/mp.v2i2.161