Exploring the Medicinal Potential of Blumea balsamifera: Insights from Molecular Docking and Molecular Dynamics Simulations Analyses

Authors

  • Nur Balqis Maulydia Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Khairan Khairan Department of Pharmacy, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Trina Ekawati Tallei Department of Biology, Faculty Mathematics and Natural Sciences, Universitas Sam Ratulangi, Manado 95115, Indonesia
  • Salaswati Salaswati Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Annisa Musdalifah Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Fiki Farah Nabila Department of Pharmacy, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Rinaldi Idroes Department of Pharmacy, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia; Department of Chemistry, Faculty Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/mp.v2i1.168

Keywords:

Ie-Jue, GC-MS, Stigmasterol, Geothermal area

Abstract

Blumea balsamifera from the Ie-Jue geothermal area in Aceh Province, Indonesia, has been reported to have a variety of secondary metabolites. However, there is limited information about the activity of these chemical metabolites from B. balsamifera. The aim of this study is to evaluate the therapeutic potential of these compounds using molecular docking and molecular dynamics simulations. Six selective compounds were thoroughly evaluated using molecular docking techniques for their inhibitory effects on both Coronavirus protease and human interleukin receptors. Additionally, druglikeness assessments based on the Lipinski rule of five were performed to evaluate these six ligands. Our results show that stigmasterol, a key component of B. balsamifera, has demonstrated low binding free energy values across four receptors. Furthermore, molecular dynamics simulations confirmed the stability of the top ligand-receptor complex, particularly stigmasterol-1IRA, based on five parameters, indicating its stability as an inhibitor. This research highlights the potential of stigmasterol as a therapeutic agent derived from medicinal plants of B. balsamifera and underscores the value of our molecular approach in identifying opportunities for pharmaceutical development.

Downloads

Download data is not yet available.

References

  1. Imelda, E., Khairan, K., Lubis, R. R., Karma, T., and Idroes, R. (2024). Impact of Environmental and Geographical Position on the Chemometric Classification of Ethanol Extracts from Isotoma longiflora Leaves, Global Journal of Environmental Science and Management, Vol. 10, No. 1, 155–168. doi:10.22034/gjesm.2024.01.11.
  2. Maulydia, N. B., Idroes, R., Khairan, K., Tallei, T. E., and Mohd Fauzi, F. (2024). Ecotoxicological Insight of Phytochemicals, Toxicological Informatics, and Heavy Metal Concentration in Tridax procumbens L. in Geothermal Areas, Global Journal of Environmental Science and Management, Vol. 10, No. 1, 369–384. doi:10.22034/gjesm.2024.01.23.
  3. Idroes, R., Khairan, K., and Fakri, F. (2017). Screening of Potential Plant Activities as Antimicrobial Materials in the Ie Jue Area (Upflow Geothermal Zone) Aceh Besar, Syiah Kuala University Press, Banda Aceh.
  4. Fakri, F., Harahap, S. P., Muhni, A., Khairan, K., Hewindati, Y. T., and Idroes, G. M. (2023). Antimicrobial Properties of Medicinal Plants in the Lower Area of Ie Seu-um Geothermal Outflow, Indonesia, Malacca Pharmaceutics, Vol. 1, No. 2, 55–61. doi:10.60084/mp.v1i2.44.
  5. Nuraskin, C., Marlina, Idroes, R., Soraya, C., and Djufri. (2020). Identification of Secondary Metabolite of Laban Leaf Extract (Vitex pinnata L) from Geothermal Areas and Non-Geothermal of Agam Mountains in Aceh Besar, Aceh Province, Indonesia, Rasayan Journal of Chemistry, Vol. 13, No. 1, 18–23. doi:10.31788/RJC.2020.1315434.
  6. Idroes, R., Yusuf, M., Saiful, S., Alatas, M., Subhan, S., Lala, A., Muslem, M., Suhendra, R., Idroes, G. M., Marwan, M., and Mahlia, T. M. I. (2019). Geochemistry Exploration and Geothermometry Application in the North Zone of Seulawah Agam, Aceh Besar District, Indonesia, Energies, Vol. 12, No. 23, 4442. doi:10.3390/en12234442.
  7. Aprianto, A., Maulana, A., Noviandy, T. R., Lala, A., Yusuf, M., Marwan, M., Afidh, R. P. F., Irvanizam, I., Nizamuddin, N., and Idroes, G. M. (2023). Exploring Geothermal Manifestations in Ie Jue , Indonesia : Enhancing Safety with Unmanned Aerial Vehicle, Leuser Journal of Environmental Studies, Vol. 1, No. 2, 47–54. doi:10.60084/ljes.v1i2.75.
  8. Tallei, T. E., Fatimawali, Yelnetty, A., Idroes, R., Kusumawaty, D., Emran, T. Bin, Yesiloglu, T. Z., Sippl, W., Mahmud, S., Alqahtani, T., Alqahtani, A. M., Asiri, S., Rahmatullah, M., Jahan, R., Khan, M. A., and Celik, I. (2021). An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Bromelain as Anti-SARS-CoV-2 Variants, Frontiers in Pharmacology, Vol. 12, No. August, 1–18. doi:10.3389/fphar.2021.717757.
  9. Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., and Emran, T. Bin. (2020). Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, Scientifica, Vol. 2020, 1–18. doi:10.1155/2020/6307457.
  10. Maulydia, N. B., Tallei, T. E., Ginting, B., Idroes, R., Illian, D. N., and Faradilla, M. (2022). Analysis of Flavonoid Compounds of Orange (Citrus sp.) Peel As Anti-Main Protease of SARS-CoV-2: A Molecular Docking Study, IOP Conference Series: Earth and Environmental Science, Vol. 951, No. 1, 012078. doi:10.1088/1755-1315/951/1/012078.
  11. Jorge, A., Lopes, O., Calado, G. P., Nascimento, Y., Alves, S., Ara, D., França, L. M., Marcus, A., and Paes, D. A. (2022). Plant Metabolites as SARS-CoV-2 Inhibitors Candidates : In Silico and In Vitro Studies, Pharmaceuticals. doi:10.3390/ph15091045.
  12. Alzahrani, A. (2022). A New Investigation into the Molecular Mechanism of Andrographolide towards Reducing Cytokine Storm, Molecules, Vol. 27, No. 14. doi:10.3390/molecules27144555.
  13. Maulydia, N. B., Khairan, K., Tallei, T. E., Estevam, E. C., Patwekar, M., Mohd Fauzi, F., and Idroes, R. (2023). GC-MS Analysis Reveals Unique Chemical Composition of Blumea balsamifera (L.) DC in Ie-Jue Geothermal Area, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 1, 9–16.
  14. Daina, A., Michielin, O., and Zoete, V. (2017). SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules, Scientific Reports, Vol. 7, No. March, 1–13. doi:10.1038/srep42717.
  15. Lipinski, C. A. (2016). Rule of Five in 2015 and Beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions, Advanced Drug Delivery Reviews, Vol. 101, 34–41. doi:10.1016/j.addr.2016.04.029.
  16. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E. (2023). PubChem 2023 update, Nucleic Acids Research, Vol. 51, No. D1, D1373–D1380. doi:10.1093/nar/gkac956.
  17. Dallakyan, S., and Olson, A. J. (2015). Small-Molecule Library Screening by Docking with PyRx, Methods in Molecular Biology, Vol. 1263, No. January, 243–250. doi:10.1007/978-1-4939-2269-7_19.
  18. Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt, K., Feng, Z., Gilliland, G. L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J. D., and Zardecki, C. (2002). Biological Crystallography The Protein Data Bank, Acta Cryst, Vol. 58, 899–907.
  19. Soy, M., Keser, G., Atagündüz, P., Tabak, F., Atagündüz, I., and Kayhan, S. (2020). Cytokine Storm in COVID-19: Pathogenesis and Overview of Anti-Inflammatory Agents Used in Treatment, Clinical Rheumatology, Vol. 39, No. 7, 2085–2094. doi:10.1007/s10067-020-05190-5.
  20. Biovia. (2020). Biovia Discovery Studio® 4.5 Comprehensive Modeling and Simulations for Life Sciences, 1–3.
  21. Trott, O., and Olson, A. J. (2009). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, Journal of Computational Chemistry, Vol. 31, No. 2, NA-NA. doi:10.1002/jcc.21334.
  22. Schöning-Stierand, K., Diedrich, K., Ehrt, C., Flachsenberg, F., Graef, J., Sieg, J., Penner, P., Poppinga, M., Ungethüm, A., and Rarey, M. (2022). ProteinsPlus: A Comprehensive Collection of Web-Based Molecular Modeling Tools, Nucleic Acids Research, Vol. 50, No. W1, W611–W615. doi:10.1093/nar/gkac305.
  23. Humphrey, W., Dalke, A., and Schulten, K. (1996). VMD: Visual Molecular Dynamics, Journal of Molecular Graphics, Vol. 14, 33–38.
  24. Phillips, J. C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Skeel, R. D., Kalé, L., and Schulten, K. (2005). Scalable Molecular Dynamics with NAMD, Journal of Computational Chemistry, Vol. 26, No. 16, 1781–1802. doi:10.1002/jcc.20289.
  25. Jo, S., Kim, T., Iyer, V. G., and Im, W. (2008). CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM, Journal of Computational Chemistry, Vol. 29, No. 11. doi:10.1002/jcc.
  26. Lipinski, C. A., Lombardo, F., Dominy, B. W., and Feeney, P. J. (2001). Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings, Advanced Drug Delivery Reviews, Vol. 46, Nos. 1–3, 3–26. doi:10.1016/S0169-409X(00)00129-0.
  27. Rachmawati, R., Idroes, R., Suhartono, E., Maulydia, N. B., and Darusman, D. (2022). In Silico and In Vitro Analysis of Tacca Tubers (Tacca leontopetaloides) from Banyak Island, Aceh Singkil Regency, Indonesia, as Antihypercholesterolemia Agents, Molecules, Vol. 27, No. 23. doi:10.3390/molecules27238605.
  28. Stanzione, F., Giangreco, I., and Cole, J. C. (2021). Use of Molecular Docking Computational Tools in Drug Discovery, Progress in Medicinal Chemistry (1st ed., Vol. 60), Elsevier B.V., 273–343. doi:10.1016/bs.pmch.2021.01.004.
  29. Bakrim, S., Benkhaira, N., Bourais, I., Benali, T., Lee, L. H., El Omari, N., Sheikh, R. A., Goh, K. W., Ming, L. C., and Bouyahya, A. (2022, September). Health Benefits and Pharmacological Properties of Stigmasterol, Antioxidants, 1912. doi:10.3390/antiox11101912.
  30. Kamaz, Z., Jassani, M. J. A.-, and Haruna, U. (2020). Screening of Common Herbal Medicines as Promising Direct Inhibitors of Sars-Cov-2 in Silico, Annual Research & Review in Biology, Vol. 35, No. 8, 53–67. doi:10.9734/arrb/2020/v35i830260.
  31. El-Askary, H. I., Meselhy, M. R., and Galal, A. M. (2003). Sesquiterpenes from Cymbopogon proximus, Molecules, Vol. 8, No. 9, 670–677. doi:10.3390/80900670.
  32. Maulydia, N. B., Khairan, K., and Noviandy, T. R. (2023). Prediction of Pharmacokinetic Parameters from Ethanolic Extract Mane Leaves (Vitex pinnata L.) in Geothermal Manifestation of Seulawah Agam Ie-Seu’um, Aceh, Malacca Pharmaceutics, Vol. 1, No. 1, 16–21. doi:10.60084/mp.v1i1.33.

Downloads

Published

2024-03-31

How to Cite

Maulydia, N. B., Khairan, K., Tallei, T. E., Salaswati, S., Musdalifah, A., Nabila, F. F., & Idroes, R. (2024). Exploring the Medicinal Potential of Blumea balsamifera: Insights from Molecular Docking and Molecular Dynamics Simulations Analyses. Malacca Pharmaceutics, 2(1), 33–40. https://doi.org/10.60084/mp.v2i1.168

Issue

Section

Article