Hybrid Handwash with Silver Nanoparticles from Calotropis gigantea Leaves and Patchouli Oil: Development and Properties

Authors

  • Indah Salsabila Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Khairan Khairan Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Pati Kemala Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Ghifari Maulana Idroes Department of Engineering Physics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Nadia Isnaini Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Nur Balqis Maulydia Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Mohamed El-Shazly Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo 11566, Egypt
  • Rinaldi Idroes Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/mp.v2i2.206

Keywords:

Handwash, Calotropis gigantea, Geothermal, Antimicrobial, Green synthesis

Abstract

When washing hands, handwashing is one way to prevent diseases caused by bacteria such as Staphylococcus aureus and Escherichia coli, the most common bacteria that can cause infections. The production of handwash utilizing silver nanoparticles as an active antibacterial agent remains a relatively infrequent practice. The synthesis of silver nanoparticles from the leaves of Calotropis gigantea, which grows in the geothermal area of Ie Seu-um Aceh Besar, has been carried out using the green synthesis method and hybrid green synthesis with patchouli oil. Handwash with active ingredients such as silver nanoparticles was successfully formulated, evaluated, and tested against S. aureus and E. coli. The organoleptic characteristics, pH, viscosity, foam height measurements, density, irritation, and antibacterial activity against S. aureus and E. coli were evaluated. The results showed that the organoleptic properties of the handwash with silver nanoparticles were not changed during a 30-day storage period, with pH values in the range of 9.7-10.3, and did not cause irritation upon using silver nanoparticle handwash. The best formula for handwashing with silver nanoparticles in inhibiting the growth of S. aureus and E. coli bacteria was F2, with inhibition zones of 12.9 ± 2.85 mm and 10.95 ± 0.8 mm, respectively. The formulated handwash with silver nanoparticles met the requirements of good liquid soap according to the Indonesian National Standard (SNI) with potent antibacterial activity.

Downloads

Download data is not yet available.

References

  1. Poolman, J. T., and Anderson, A. S. (2018). Escherichia coli and Staphylococcus aureus: Leading Bacterial Pathogens of Healthcare Associated Infections and Bacteremia in Older-Age Populations, Expert Review of Vaccines, Vol. 17, No. 7, 607–618. doi:10.1080/14760584.2018.1488590.
  2. Ratte, T. A., Fatimawali, F., Tallei, T. E., Suoth, E. J., Antasionasti, I., and Yamlean, P. (2023). Evaluation of Antibacterial Properties from Endophytic Fungi of Chrysanthemum indicum (L.) Flowers against Escherichia coli and Staphylococcus aureus, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 2, 71–77. doi:10.61975/gjset.v1i2.15.
  3. Bueris, V., Sircili, M. P., Taddei, C. R., Santos, M. F. dos, Franzolin, M. R., Martinez, M. B., Ferrer, S. R., Barreto, M. L., and Trabulsi, L. R. (2007). Detection of Diarrheagenic Escherichia coli from Children with and without Diarrhea in Salvador, Bahia, Brazil, Memórias Do Instituto Oswaldo Cruz, Vol. 102, No. 7, 839–844. doi:10.1590/S0074-02762007005000116.
  4. Charoenwat, B., Suwannaying, K., Paibool, W., Laoaroon, N., Sutra, S., and Thepsuthammarat, K. (2022). Burden and Pattern of Acute Diarrhea in Thai Children under 5 Years of Age: A 5-Year Descriptive Analysis Based on Thailand National Health Coverage (NHC) Data, BMC Public Health, Vol. 22, No. 1, 1161. doi:10.1186/s12889-022-13598-8.
  5. Giudice, P. (2020). Skin Infections Caused by Staphylococcus aureus, Acta Dermato Venereologica, Vol. 100, No. 9, adv00110-215. doi:10.2340/00015555-3466.
  6. Blauvelt, A., and Chiricozzi, A. (2018). The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis, Clinical Reviews in Allergy & Immunology, Vol. 55, No. 3, 379–390. doi:10.1007/s12016-018-8702-3.
  7. Maulana, A., Noviandy, T. R., Suhendra, R., Earlia, N., Bulqiah, M., Idroes, G. M., Niode, N. J., Sofyan, H., Subianto, M., and Idroes, R. (2023). Evaluation of Atopic Dermatitis Severity Using Artificial Intelligence, Narra J, Vol. 3, No. 3, e511. doi:10.52225/narra.v3i3.511.
  8. Mempel, M., Voelcker, V., Köllisch, G., Plank, C., Rad, R., Gerhard, M., Schnopp, C., Fraunberger, P., Walli, A. K., Ring, J., Abeck, D., and Ollert, M. (2003). Toll-Like Receptor Expression in Human Keratinocytes: Nuclear Factor κB Controlled Gene Activation by Staphylococcus aureus is Toll-Like Receptor 2 But Not Toll-Like Receptor 4 or Platelet Activating Factor Receptor Dependent, Journal of Investigative Dermatology, Vol. 121, No. 6, 1389–1396. doi:10.1111/j.1523-1747.2003.12630.x.
  9. Suhendra, R., Suryadi, S., Husdayanti, N., Maulana, A., and Rizky, T. (2023). Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification, Heca Journal of Applied Sciences, Vol. 1, No. 2, 54–61. doi:10.60084/hjas.v1i2.85.
  10. Maulana, A., Noviandy, T. R., Suhendra, R., Earlia, N., Sofyan, H., Subianto, M., and Idroes, R. (2023). Performance Analysis and Feature Extraction for Classifying the Severity of Atopic Dermatitis Diseases, 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), 226–231. doi:10.1109/COSITE60233.2023.10249760.
  11. Hattar, K., Grandel, U., Moeller, A., Fink, L., Iglhaut, J., Hartung, T., Morath, S., Seeger, W., Grimminger, F., and Sibelius, U. (2006). Lipoteichoic Acid (LTA) from Staphylococcus aureus Stimulates Human Neutrophil Cytokine Release by a CD14-Dependent, Toll-Like-Receptor-Independent Mechanism: Autocrine Role of Tumor Necrosis Factor-α in Mediating LTA-Induced Interleukin-8 Generation, Critical Care Medicine, Vol. 34, No. 3, 835–841. doi:10.1097/01.CCM.0000202204.01230.44.
  12. Kumar, S., Colpitts, S. L., Ménoret, A., Budelsky, A. L., Lefrancois, L., and Vella, A. T. (2013). Rapid αβ T-Cell Responses Orchestrate Innate Immunity in Response to Staphylococcal Enterotoxin A, Mucosal Immunology, Vol. 6, No. 5, 1006–1015. doi:10.1038/mi.2012.138.
  13. Kebaier, C., Chamberland, R. R., Allen, I. C., Gao, X., Broglie, P. M., Hall, J. D., Jania, C., Doerschuk, C. M., Tilley, S. L., and Duncan, J. A. (2012). Staphylococcus aureus α-Hemolysin Mediates Virulence in a Murine Model of Severe Pneumonia Through Activation of the NLRP3 Inflammasome, The Journal of Infectious Diseases, Vol. 205, No. 5, 807–817. doi:10.1093/infdis/jir846.
  14. Rowe, S. E., Wagner, N. J., Li, L., Beam, J. E., Wilkinson, A. D., Radlinski, L. C., Zhang, Q., Miao, E. A., and Conlon, B. P. (2019). Reactive Oxygen Species Induce Antibiotic Tolerance during Systemic Staphylococcus aureus Infection, Nature Microbiology, Vol. 5, No. 2, 282–290. doi:10.1038/s41564-019-0627-y.
  15. Liu, W., Yan, M., Sugui, J. A., Li, H., Xu, C., Joo, J., Kwon-Chung, K. J., Coleman, W. G., and Rodgers, G. P. (2013). Olfm4 Deletion Enhances Defense against Staphylococcus aureus in Chronic Granulomatous Disease, Journal of Clinical Investigation, Vol. 123, No. 9, 3751–3755. doi:10.1172/JCI68453.
  16. Widaa, A., Claro, T., Foster, T. J., O’Brien, F. J., and Kerrigan, S. W. (2012). Staphylococcus aureus Protein A Plays a Critical Role in Mediating Bone Destruction and Bone Loss in Osteomyelitis, PLoS ONE, Vol. 7, No. 7, e40586. doi:10.1371/journal.pone.0040586.
  17. Martinez-Medina, M., and Garcia-Gil, L. J. (2014). Escherichia coli in Chronic Inflammatory Bowel Diseases: An Update on Adherent Invasive Escherichia coli Pathogenicity, World Journal of Gastrointestinal Pathophysiology, Vol. 5, No. 3, 213. doi:10.4291/wjgp.v5.i3.213.
  18. Trecarichi, E. M., Giuliano, G., Cattaneo, C., Ballanti, S., Criscuolo, M., Candoni, A., Marchesi, F., Laurino, M., Dargenio, M., Fanci, R., Cefalo, M., Delia, M., Spolzino, A., Maracci, L., Nadali, G., Busca, A., Del Principe, M. I., Daffini, R., Simonetti, E., Dragonetti, G., Zannier, M. E., Pagano, L., and Tumbarello, M. (2019). Bloodstream Infections Caused by Escherichia coli in Onco-Haematological Patients: Risk Factors and Mortality in an Italian Prospective Survey, PLOS ONE, Vol. 14, No. 10, e0224465. doi:10.1371/journal.pone.0224465.
  19. Hayati, R., Sari, A., Hanum, F., Nabilah, N., Earlia, N., and Lukitaningsih, E. (2023). Formulation and Antibacterial Activity of Averrhoa bilimbi L. Fruits Extract in Vegetable Oil-Based Liquid Hand Soap, Malacca Pharmaceutics, Vol. 1, Nos. 1 SE-Article, 30–36. doi:10.60084/mp.v1i1.35.
  20. Das, S., Agarwal, S., Samanta, S., Kumari, M., and Das, R. (2024). Formulation and Evaluation of Herbal Soap, Journal of Pharmacognosy and Phytochemistry, Vol. 13, No. 4, 14–19. doi:10.22271/phyto.2024.v13.i4a.14990.
  21. Aznury, M., and Serlina, A. (2021). Optimasi Formula Pembuatan Sabun Padat Antiseptik Alami Dengan Penambahan Ekstrak Daun Sirih Hijau (Piper betle L), Kinetika, Vol. 12, No. 1, 51–59.
  22. Yulia, M., Herdina, M., and Mulyani, D. (2022). Formulasi Sabun Padat Ekstrak Etanol Daun Sirih Merah (Piper crocatum), Jurnal Farmagazine, Vol. 9, No. 1, 44. doi:10.47653/farm.v9i1.587.
  23. Fatimah, S., Nurul Marfu’ah, U., and Abadi Kiswandono, A. (2021). Formula Sabun Susu Sapi Dengan Penambahan Ekstrak Daun Cengkeh, ANALIT:Analytical and Environmental Chemistry, Vol. 6, No. 01, 56–65. doi:10.23960/aec.v6.i1.2021.p56-65.
  24. Fatkhil haque, A., Mulyani, E., and Hendick, J. (2022). Formulasi Sabun Cair Cuci Tangan Antibakteri Ekstrak Etanol Daun Cabe Rawit (Solanum frutescens.L), Indonesian Journal of Pharmaceutical Education, Vol. 2, No. 2, 152–160. doi:10.37311/ijpe.v2i2.15510.
  25. Rosmainar, L. (2021). Formulasi Dan Evaluasi Sediaan Sabun Cair Dari Ekstrak Daun Jeruk Purut (Citrus hystrix) Dan Kopi Robusta (Coffea canephora) Serta Uji Cemaran Mikroba, Jurnal Kimia Riset, Vol. 6, No. 1, 58.
  26. Yonathan, K., Mann, R., Mahbub, K. R., and Gunawan, C. (2022). The Impact of Silver Nanoparticles on Microbial Communities and Antibiotic Resistance Determinants in the Environment, Environmental Pollution, Vol. 293, 118506. doi:10.1016/j.envpol.2021.118506.
  27. Kemala, P., Khairan, K., Ramli, M., Idroes, G. M., Mirda, E., Ningsih, D. S., Tallei, T. E., and Idroes, R. (2023). Characterizing the Size Distribution of Silver Nanoparticles Biofabricated Using Calotropis gigantea from Geothermal Zone, Heca Journal of Applied Sciences, Vol. 1, No. 2, 30–36. doi:10.60084/hjas.v1i2.21.
  28. Abass Sofi, M., Sunitha, S., Ashaq Sofi, M., Khadheer Pasha, S. K., and Choi, D. (2022). An Overview of Antimicrobial and Anticancer Potential of Silver Nanoparticles, Journal of King Saud University - Science, Vol. 34, No. 2, 101791. doi:10.1016/j.jksus.2021.101791.
  29. Kemala, P., Idroes, R., Khairan, K., Tallei, T. E., Ramli, M., and Efendi, R. (2021). Green Synthesis of Silver Nanoparticles Using Calotropis gigantea And Its Characterization Using UV-Vis Spectroscopy, IOP Conference Series: Earth and Environmental Science (Vol. 951), 012090. doi:10.1088/1755-1315/951/1/012090.
  30. Kemala, P., Idroes, R., Khairan, K., Ramli, M., Jalil, Z., Idroes, G. M., Tallei, T. E., Helwani, Z., Safitri, E., Iqhrammullah, M., and Nasution, R. (2022). Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia, Molecules (Basel, Switzerland), Vol. 27, No. 16, 1–13. doi:10.3390/molecules27165310.
  31. Kemala, P., Khairan, K., Ramli, M., Helwani, Z., Rusyana, A., Lubis, V. F., Ahmad, K., Idroes, G. M., Noviandy, T. R., and Idroes, R. (2024). Optimizing Antimicrobial Synergy: Green Synthesis of Silver Nanoparticles from Calotropis gigantea Leaves Enhanced by Patchouli Oil, Narra J, Vol. 4, No. 2, e800. doi:10.52225/narra.v4i2.800.
  32. Fakri, F., Harahap, S. P., Muhni, A., Khairan, K., Hewindati, Y. T., and Idroes, G. M. (2023). Antimicrobial Properties of Medicinal Plants in the Lower Area of Ie Seu-um Geothermal Outflow, Indonesia, Malacca Pharmaceutics, Vol. 1, No. 2, 55–61. doi:10.60084/mp.v1i2.44.
  33. Hanandi, S., Putri, K. S. S., Poetri, O. N., Annisa, S., and Rahmasari, R. (2021). Formulation of Silver Nanoparticles Liquid Hand Wash with Polyvinyl Alcohol as Stabilizer, Jurnal Farmasi Indonesia, Vol. 13, No. 1, 81–94.
  34. Badan Standarisasi Nasional. (1995). Standar Nasional Indonesia: Sabun Mandi Cair, Badan Standardisasi Nasional.
  35. Maysarah, H., Desiyana, L. S., Nurzuhra, S., and Illian, D. N. (2023). Utilization of Spent Arabica Coffee Grounds as Raw Material for Activated Charcoal in Liquid Bath Soap Formulation, Pharmaceutical Sciences and Research, Vol. 10, No. 1. doi:10.7454/psr.v10i1.1282.
  36. Sapra, A., Khairi, N., Margaretha, M., Aisyah, A. N., Indrisari, M., Jumaetri, F., Fauziah, N., and Marwati, M. (2022). Formulasi Sediaan Sabun Cuci Tangan Ekstrak Daun Kelor (Moringa Oleifera L.) dan Efektivitasnya Sebagai Antiseptik, Journal of Pharmaceutical and Medicinal Sciences, Vol. 6, No. 2.
  37. Untari, E. K., and Robiyanto, R. (2018). Uji Fisikokimia dan Uji Iritasi Sabun Antiseptik Kulit Daun Aloe vera (L.) Burm. f, Jurnal Jamu Indonesia, Vol. 3, No. 2, 55–61. doi:10.29244/jji.v3i2.54.
  38. Clinical and Laboratory Standards Institute. (2012). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition, Clinical and Laboratory Standards Institute.
  39. Ali, E. M., and Abdallah, B. M. (2020). Effective Inhibition of Candidiasis Using an Eco-Friendly Leaf Extract of Calotropis-gigantean-Mediated Silver Nanoparticles, Nanomaterials, Vol. 10, No. 3, 422. doi:10.3390/nano10030422.
  40. Mathew, S., Victo, C. P., Sidhi, J., and Thanzeela, B. (2020). Biosynthesis of Silver Nanoparticle Using Flowers of Calotropis gigantea (L.) W.T. Aiton and Activity Against Pathogenic Bacteria, Arabian Journal of Chemistry, 0–5. doi:10.1016/j.arabjc.2020.10.038.
  41. Stability Testing of Pharmaceutical Products. (2021). Journal of Applied Pharmaceutical Science. doi:10.7324/JAPS.2012.2322.
  42. Kolling, W. M. (2004). Handbook of Pharmaceutical Excipients, American Journal of Pharmaceutical Education, Vol. 68, Nos. 1–5, BF1.
  43. Sita, S. N. F., Prabandari, R., and Kusuma, I. Y. (2022). Pengaruh Variasi Konsentrasi Gliserin Sebagai Humektan Terhadap Stabilitas Sediaan Pasta Gigi Ekstrak Etanol Daun Salam (Syzygium Polyanthum (Wight) Walp), Pharmacy Genius, Vol. 1, No. 1, 27–34.
  44. Astuti, S. I., Lestari, P., Aprianingsih, T., Sumardani, T. Z., Wicaksana, G. C., and Sholiah, A. (2022). Pengaruh Suhu Terhadap Kelarutan dan Viskositas pada Gula Pasir, INKUIRI: Jurnal Pendidikan IPA, Vol. 11, No. 1, 19–21. doi:10.20961/inkuiri.v11i1.52179.
  45. Klimaszewska, E., Wieczorek, D., Lewicki, S., Stelmasiak, M., Ogorzałek, M., Szymański, Ł., Tomasiuk, R., and Markuszewski, L. (2022). Effect of New Surfactants on Biological Properties of Liquid Soaps, Molecules, Vol. 27, No. 17, 5425. doi:10.3390/molecules27175425.
  46. Morales, G., Sierra, P., Mancilla, A., Paredes, A., Loyola, L. A., Gallardo, O., and Borquez, J. (2003). Secondary Metabolites from Four Medicinal Plants from Northern Chile: Antimicrobial Activity and Biotoxicity against Artemia salina, Journal of the Chilean Chemical Society, Vol. 48, No. 2. doi:10.4067/S0717-97072003000200002.
  47. Dominica, D., Dian Handayani, Delia Komalasari, Buistu Arbaa Nuyuh Putri, Dinda Zulkarnain, Kurnia Hafidzah, and Rizki Hadi Wibowo. (2022). Uji Efektivitas Antibakteri Sabun Cuci Tangan Yang Mengandung Perasan Jeruk Kalimansi (Citrofotunella Microcarpa), Jurnal Ilmiah Manuntung, Vol. 8, No. 1, 1–7. doi:10.51352/jim.v8i1.437.
  48. Rowe, R. C., Sheskey, P., and Quinn, M. (2009). Handbook of Pharmaceutical Excipients, Libros Digitales-Pharmaceutical Press.
  49. Alshameri, A. W., and Owais, M. (2022). Antibacterial and Cytotoxic Potency of the Plant-Mediated Synthesis of Metallic Nanoparticles Ag NPs and ZnO NPs: A Review, OpenNano, Vol. 8, 100077. doi:10.1016/j.onano.2022.100077.
  50. Bapat, R. A., Chaubal, T. V., Joshi, C. P., Bapat, P. R., Choudhury, H., Pandey, M., Gorain, B., and Kesharwani, P. (2018). An Overview of Application of Silver Nanoparticles for Biomaterials in Dentistry, Materials Science and Engineering: C, Vol. 91, 881–898. doi:10.1016/j.msec.2018.05.069.
  51. Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., and Mozafari, M. (2018). Selective Cytotoxicity of Green Synthesized Silver Nanoparticles against the MCF-7 Tumor Cell Line and Their Enhanced Antioxidant and Antimicrobial Properties, International Journal of Nanomedicine, Vol. Volume 13, 8013–8024. doi:10.2147/IJN.S189295.
  52. Ramkumar, V. S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G. D., Dung, T. N. B., and Kannapiran, E. (2017). Biofabrication and Characterization of Silver Nanoparticles Using Aqueous Extract of Seaweed Enteromorpha compressa and Its Biomedical Properties, Biotechnology Reports, Vol. 14, 1–7. doi:10.1016/j.btre.2017.02.001.
  53. Durán, N., Nakazato, G., and Seabra, A. B. (2016). Antimicrobial Activity of Biogenic Silver Nanoparticles, and Silver Chloride Nanoparticles: An Overview and Comments, Applied Microbiology and Biotechnology, Vol. 100, No. 15, 6555–6570. doi:10.1007/s00253-016-7657-7.
  54. Ode, M. F., Ramli, M., and Sahidin, . (2019). Kajian Bioaktivitas Antibakteri Dan Senyawa Metabolit Sekunder Spons Laut Haliclona sp., Dari Perairan Tanjung Tiram Moramo Utara, Sulawesi Tenggara, Jurnal Sapa Laut (Jurnal Ilmu Kelautan), Vol. 4, No. 1, 13. doi:10.33772/jsl.v4i1.6803.
  55. Ulfah, M. (2020). Aktivitas Antibakteri Ekstrak Aseton Rimpang Kunyit (Curcuma domestica) Terhadap Bakteri Staphylococcus aureus Dan Escherichia coli, Jurnal FARMAKU (Farmasi Muhammadiyah Kuningan), Vol. 5, No. 1, 25–31.

Downloads

Published

2024-09-01

How to Cite

Salsabila, I., Khairan, K., Kemala, P., Idroes, G. M., Isnaini, N., Maulydia, N. B., El-Shazly, M., & Idroes, R. (2024). Hybrid Handwash with Silver Nanoparticles from Calotropis gigantea Leaves and Patchouli Oil: Development and Properties. Malacca Pharmaceutics, 2(2), 52–62. https://doi.org/10.60084/mp.v2i2.206