QSAR Modeling for Predicting Beta-Secretase 1 Inhibitory Activity in Alzheimer's Disease with Support Vector Regression

Authors

  • Teuku Rizky Noviandy Interdisciplinary Innovation Research Unit, Graha Primera Saintifika, Aceh Besar 23771, Indonesia
  • Ghifari Maulana Idroes Department of Nuclear Engineering and Engineering Physics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
  • Trina Ekawati Tallei Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado, Indonesia
  • Dian Handayani Sumatran Biota Laboratory, Faculty of Pharmacy, Universitas Andalas, 25163 Padang, Indonesia
  • Rinaldi Idroes Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/mp.v2i2.226

Keywords:

BACE1, Machine learning, Molecular descriptors, Supervised learning

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline, with the accumulation of β-amyloid (Aβ) plaques playing a key role in its progression. Beta-Secretase 1 (BACE1) is a crucial enzyme in Aβ production, making it a prime therapeutic target for AD treatment. However, designing effective BACE1 inhibitors has been challenging due to poor selectivity and limited blood-brain barrier permeability. To address these challenges, we employed a machine learning approach using Support Vector Regression (SVR) in a Quantitative Structure-Activity Relationship (QSAR) model to predict the inhibitory activity of potential BACE1 inhibitors. Our model, trained on a dataset of 7,298 compounds from the ChEMBL database, accurately predicted pIC50 values using molecular descriptors, achieving an R² of 0.690 on the testing set. The model's performance demonstrates its utility in prioritizing drug candidates, potentially accelerating drug discovery. This study highlights the effectiveness of computational approaches in optimizing drug discovery and suggests that further refinement could enhance the model’s predictive power for AD therapeutics.

Downloads

Download data is not yet available.

References

  1. Tiwari, S., Atluri, V., Kaushik, A., Yndart, A., and Nair, M. (2019). Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics, International Journal of Nanomedicine, Vol. Volume 14, 5541–5554. doi:10.2147/IJN.S200490.
  2. Penke, B., Bogár, F., and Fülöp, L. (2017). β-Amyloid and the Pathomechanisms of Alzheimer’s Disease: A Comprehensive View, Molecules, Vol. 22, No. 10, 1692. doi:10.3390/molecules22101692.
  3. Gholami, A. (2023). Alzheimer’s Disease: The Role of Proteins in Formation, Mechanisms, and New Therapeutic Approaches, Neuroscience Letters, Vol. 817, 137532. doi:10.1016/j.neulet.2023.137532.
  4. Maia, M. A., and Sousa, E. (2019). BACE-1 and γ-Secretase as Therapeutic Targets for Alzheimer’s Disease, Pharmaceuticals, Vol. 12, No. 1, 41. doi:10.3390/ph12010041.
  5. Vassar, R. (2014). BACE1 Inhibitor Drugs in Clinical Trials for Alzheimer’s Disease, Alzheimer’s Research & Therapy, Vol. 6, No. 9, 89. doi:10.1186/s13195-014-0089-7.
  6. Coimbra, J. R. M., Resende, R., Custódio, J. B. A., Salvador, J. A. R., and Santos, A. E. (2024). BACE1 Inhibitors for Alzheimer’s Disease: Current Challenges and Future Perspectives, Journal of Alzheimer’s Disease, 1–26. doi:10.3233/JAD-240146.
  7. Leelananda, S. P., and Lindert, S. (2016). Computational Methods in Drug Discovery, Beilstein Journal of Organic Chemistry, Vol. 12, 2694–2718. doi:10.3762/bjoc.12.267.
  8. Noviandy, T. R., Maulana, A., Idroes, G. M., Emran, T. B., Tallei, T. E., Helwani, Z., and Idroes, R. (2023). Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review, Infolitika Journal of Data Science, Vol. 1, No. 1, 32–41. doi:10.60084/ijds.v1i1.91.
  9. Chen, W., Liu, X., Zhang, S., and Chen, S. (2023). Artificial Intelligence for Drug Discovery: Resources, Methods, and Applications, Molecular Therapy - Nucleic Acids, Vol. 31, 691–702. doi:10.1016/j.omtn.2023.02.019.
  10. Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12.
  11. Ponzoni, I., Sebastián-Pérez, V., Martínez, M. J., Roca, C., De la Cruz Pérez, C., Cravero, F., Vazquez, G. E., Páez, J. A., Díaz, M. F., and Campillo, N. E. (2019). QSAR Classification Models for Predicting the Activity of Inhibitors of Beta-Secretase (BACE1) Associated with Alzheimer’s Disease, Scientific Reports, Vol. 9, No. 1, 9102. doi:10.1038/s41598-019-45522-3.
  12. Aqeel, I., Bilal, M., Majid, A., and Majid, T. (2022). Hybrid Approach to Identifying Druglikeness Leading Compounds against COVID-19 3CL Protease, Pharmaceuticals, Vol. 15, No. 11, 1333. doi:10.3390/ph15111333.
  13. Noviandy, T. R., Maulana, A., Idroes, G. M., Maulydia, N. B., Patwekar, M., Suhendra, R., and Idroes, R. (2023). Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’s Disease Drug Discovery, Malacca Pharmaceutics, Vol. 1, No. 2, 48–54. doi:10.60084/mp.v1i2.60.
  14. Mswahili, M. E., Martin, G. L., Woo, J., Choi, G. J., and Jeong, Y.-S. (2021). Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum, Biomolecules, Vol. 11, No. 12, 1750. doi:10.3390/biom11121750.
  15. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Machine Learning Approach to Predict AXL Kinase Inhibitor Activity for Cancer Drug Discovery Using XGBoost and Bayesian Optimization, Journal of Soft Computing and Data Mining, Vol. 5, No. 1, 46–56.
  16. Toopradab, B., Xie, W., Duan, L., Hengphasatporn, K., Harada, R., Sinsulpsiri, S., Shigeta, Y., Shi, L., Maitarad, P., and Rungrotmongkol, T. (2024). Machine Learning-Based QSAR and Lb-PaCS-MD Guided Design of SARS-CoV-2 Main Protease Inhibitors, Bioorganic & Medicinal Chemistry Letters, Vol. 110, 129852. doi:10.1016/j.bmcl.2024.129852.
  17. Shi, Y. (2021). Support Vector Regression-Based QSAR Models for Prediction of Antioxidant Activity of Phenolic Compounds, Scientific Reports, Vol. 11, No. 1, 8806. doi:10.1038/s41598-021-88341-1.
  18. Cheng, S., and Ding, Y. (2020). Construction of QSAR Model between the Ligand and γ-Aminobutyric Acid Type A Receptor Using Support Vector Regression Algorithm, 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), IEEE, 202–205. doi:10.1109/DCABES50732.2020.00060.
  19. Xu, Y., Zomer, S., and Brereton, R. G. (2006). Support Vector Machines: A Recent Method for Classification in Chemometrics, Critical Reviews in Analytical Chemistry, Vol. 36, Nos. 3–4, 177–188. doi:10.1080/10408340600969486.
  20. Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., and Overington, J. P. (2012). ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery, Nucleic Acids Research, Vol. 40, No. D1, D1100–D1107. doi:10.1093/nar/gkr777.
  21. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). An Interpretable Machine Learning Strategy for Antimalarial Drug Discovery with LightGBM and SHAP, Journal of Future Artificial Intelligence and Technologies, Vol. 1, No. 2, 84–95. doi:10.62411/faith.2024-16.
  22. Noviandy, T. R., Nisa, K., Idroes, G. M., Hardi, I., and Sasmita, N. R. (2024). Classifying Beta-Secretase 1 Inhibitor Activity for Alzheimer’s Drug Discovery with LightGBM, Journal of Computing Theories and Applications, Vol. 2, No. 2, 138–147. doi:10.62411/jcta.10129.
  23. Xue, L., and Bajorath, J. (2000). Molecular Descriptors in Chemoinformatics, Computational Combinatorial Chemistry, and Virtual Screening, Combinatorial Chemistry & High Throughput Screening, Vol. 3, No. 5, 363–372. doi:10.2174/1386207003331454.
  24. Grisoni, F., Consonni, V., and Todeschini, R. (2018). Impact of Molecular Descriptors on Computational Models, 171–209. doi:10.1007/978-1-4939-8639-2_5.
  25. Moriwaki, H., Tian, Y. S., Kawashita, N., and Takagi, T. (2018). Mordred: A Molecular Descriptor Calculator, Journal of Cheminformatics, Vol. 10, No. 1, 1–14. doi:10.1186/s13321-018-0258-y.
  26. Noviandy, T. R., Maulana, A., Idroes, G. M., Irvanizam, I., Subianto, M., and Idroes, R. (2023). QSAR-Based Stacked Ensemble Classifier for Hepatitis C NS5B Inhibitor Prediction, 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), IEEE, 220–225. doi:10.1109/COSITE60233.2023.10250039.
  27. Suhendra, R., Husdayanti, N., Suryadi, S., Juliwardi, I., Sanusi, S., Ridho, A., Ardiansyah, M., Murhaban, M., and Ikhsan, I. (2023). Cardiovascular Disease Prediction Using Gradient Boosting Classifier, Infolitika Journal of Data Science, Vol. 1, No. 2, 56–62. doi:10.60084/ijds.v1i2.131.
  28. Safriandono, A. N., Setiadi, D. R. I. M., Dahlan, A., Rahmanti, F. Z., Wibisono, I. S., and Ojugo, A. A. (2024). Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification, Journal of Future Artificial Intelligence and Technologies, Vol. 1, No. 1, 51–63. doi:10.62411/faith.2024-12.
  29. Zhang, F., and O’Donnell, L. J. (2020). Support Vector Regression, Machine Learning, Elsevier, 123–140. doi:10.1016/B978-0-12-815739-8.00007-9.
  30. Huang, J., and Fan, X. (2013). Reliably Assessing Prediction Reliability for High Dimensional QSAR Data, Molecular Diversity, Vol. 17, No. 1, 63–73. doi:10.1007/s11030-012-9415-9.
  31. Algamal, Z. Y., Qasim, M. K., Lee, M. H., and Mohammad Ali, H. T. (2020). High-Dimensional QSAR/QSPR Classification Modeling Based on Improving Pigeon Optimization Algorithm, Chemometrics and Intelligent Laboratory Systems, Vol. 206, 104170. doi:10.1016/j.chemolab.2020.104170.
  32. Asif, D., Bibi, M., Arif, M. S., and Mukheimer, A. (2023). Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization, Algorithms, Vol. 16, No. 6, 308. doi:10.3390/a16060308.
  33. Ding, H., Xing, F., Zou, L., and Zhao, L. (2024). QSAR analysis of VEGFR-2 inhibitors based on machine learning, Topomer CoMFA and molecule docking, BMC Chemistry, Vol. 18, No. 1, 59. doi:10.1186/s13065-024-01165-8.
  34. Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., and Sasmita, N. R. (2023). ANFIS-Based QSRR Modelling for Kovats Retention Index Prediction in Gas Chromatography, Infolitika Journal of Data Science, Vol. 1, No. 1, 1–14. doi:10.60084/ijds.v1i1.73.
  35. Idroes, R., Noviandy, T., Maulana, A., Suhendra, R., Sasmita, N., Muslem, M., Idroes, G. M., Kemala, P., and Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index, International Review on Modelling and Simulations (IREMOS), Vol. 14, No. 2, 137.
  36. Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Adam, M., Rusyana, A., and Sofyan, H. (2023). Deep Learning-Based Bitcoin Price Forecasting Using Neural Prophet, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 19–25. doi:10.60084/eje.v1i1.51.

Downloads

Published

2024-09-30

How to Cite

Noviandy, T. R., Idroes, G. M., Tallei, T. E., Handayani, D., & Idroes, R. (2024). QSAR Modeling for Predicting Beta-Secretase 1 Inhibitory Activity in Alzheimer’s Disease with Support Vector Regression. Malacca Pharmaceutics, 2(2), 79–85. https://doi.org/10.60084/mp.v2i2.226