Optimization of Starch—κ-Carrageenan Hybrid Film as Drug Delivery System Using Response Surface Method

Authors

  • Khairun Nisah Department of Chemistry, Faculty of Sciences and Technology, Universitas Ar-Raniry, Banda Aceh 23111, Indonesia
  • Afrilia Fahrina Research Center for Marine and Land Bioindustry, National Research and Innovation Agency (BRIN), North Lombok 83756, Indonesia
  • Diva Rayyan Rizki Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, 23111, Indonesia
  • Kana Puspita Department of Chemistry Education, Faculty of Teacher Training and Education, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/hjas.v1i1.10

Keywords:

Biopolymer, Central composite design, Design expert, FT-IR, Polyelectrolyte complex

Abstract

Development of drug delivery systems (DDS) has been widely carried out using safe biopolymers – starch and κ-carrageenan. However, for optimal use, the foregoing polymers still suffers from mechanical weakness. Combining both polymers could enhance the properties of each of the polymer. This research aimed of improving the applicability of starch and κ-carrageenan as DDS by means of polyelectrolyte complexation to form a polymer film. The composition ratio of starch:κ-carrageenan was optimized using response surface method (RSM) on Design Expert 11.0 based on water swelling, tensile strength, and disintegration time of the film. Fourier transform infrared spectrometry was performed on the prepared starch—κ-carrageenan film and suggested the successful film preparation. The bulk characteristics of the film are dependent on the starch or κ-carrageenan composition ratio, where starch has been associated with higher thickness, while κ-carrageenan — rigidity. From the RSM, the optimized composition was revealed to be 2.95 and 2.84 g for starch and κ-carrageenan, respectively, in a 60 mL aqueous solvent. The predicted optimum properties of the film were 160.21%, 3.26 MPa, and 17.47 min for swelling degree, tensile strength, and disintegration time, respectively. Taken altogether, the characteristics of starch or κ-carrageenan individually could be modified by polymeric combination, where they could be optimized by means of RSM.

Downloads

Download data is not yet available.

References

  1. Gopinath, V., Saravanan, S., Al-Maleki, A. R., Ramesh, M., Vadivelu, J. (2018). A review of natural polysaccharides for drug delivery applications: Special focus on cellulose, starch and glycogen, Biomedicine & Pharmacotherapy, Vol. 107, 96–108. doi:10.1016/j.biopha.2018.07.136
  2. Horst, C., Pagno, C. H., Flores, S. H., Costa, T. M. H. (2020). Hybrid starch/silica films with improved mechanical properties, Journal of Sol-Gel Science and Technology, Vol. 95, No. 1, 52–65. doi:10.1007/s10971-020-05234-x
  3. Ghasemlou, M., Daver, F., Ivanova, E. P., Adhikari, B. (2020). Synthesis of green hybrid materials using starch and non-isocyanate polyurethanes, Carbohydrate Polymers, Vol. 229, 115535. doi:10.1016/j.carbpol.2019.115535
  4. Iqhrammullah, M., Marlina, Nur, S. (2020). Adsorption Behaviour of Hazardous Dye (Methyl Orange) on Cellulose-Acetate Polyurethane Sheets, IOP Conference Series: Materials Science and Engineering, Vol. 845, No. 1, 012035. doi:10.1088/1757-899X/845/1/012035
  5. Iqhrammullah, M., Suyanto, H., Rahmi, Pardede, M., Karnadi, I., Kurniawan, K. H., Chiari, W., Abdulmadjid, S. N. (2021). Cellulose acetate-polyurethane film adsorbent with analyte enrichment for in-situ detection and analysis of aqueous Pb using Laser-Induced Breakdown Spectroscopy (LIBS), Environmental Nanotechnology, Monitoring & Management, Vol. 16, 100516. doi:10.1016/j.enmm.2021.100516
  6. Synergetic photocatalytic and adsorptive removals of metanil yellow using TiO2/grass-derived cellulose/chitosan (TiO2/GC/CH) film composite. (2021). International Journal of Engineering, Vol. 34, No. 8. doi:10.5829/ije.2021.34.08b.03
  7. Rahmi, Julinawati, Nina, M., Fathana, H., Iqhrammullah, M. (2022). Preparation and characterization of new magnetic chitosan-glycine-PEGDE (Fe3O4/Ch-G-P) beads for aqueous Cd(II) removal, Journal of Water Process Engineering, Vol. 45, 102493. doi:10.1016/j.jwpe.2021.102493
  8. Fathana, H., Iqhrammullah, M., Rahmi, R., Adlim, M., Lubis, S. (2021). Tofu wastewater-derived amino acids identification using LC-MS/MS and their uses in the modification of chitosan/TiO2 film composite, Chemical Data Collections, Vol. 35, 100754. doi:10.1016/j.cdc.2021.100754
  9. Rahmi, R., Lelifajri, L., Iqbal, M., Fathurrahmi, F., Jalaluddin, J., Sembiring, R., Farida, M., Iqhrammullah, M. (2023). Preparation, Characterization and Adsorption Study of PEDGE-Cross-linked Magnetic Chitosan (PEDGE-MCh) Microspheres for Cd2+ Removal, Arabian Journal for Science and Engineering, Vol. 48, No. 1, 159–167. doi:10.1007/s13369-022-06786-6
  10. Safitri, E., Omaira, Z., Nazaruddin, N., Mustafa, I., Saleha, S., Idroes, R., Ginting, B., Iqhrammullah, M., Alva, S., Paristiowati, M. (2022). Fabrication of an Immobilized Polyelectrolite Complex (PEC) Membrane from Pectin-Chitosan and Chromoionophore ETH 5294 for pH-Based Fish Freshness Monitoring, Coatings, Vol. 12, No. 1, 88. doi:10.3390/coatings12010088
  11. Nazaruddin, N., Afifah, N., Bahi, M., Susilawati, S., Sani, N. D. M., Esmaeili, C., Iqhrammullah, M., Murniana, M., Hasanah, U., Safitri, E. (2021). A simple optical pH sensor based on pectin and Ruellia tuberosa L-derived anthocyanin for fish freshness monitoring, F1000Research, Vol. 10, 422. doi:10.12688/f1000research.52836.2
  12. Liu, J., Zhan, X., Wan, J., Wang, Y., Wang, C. (2015). Review for carrageenan-based pharmaceutical biomaterials: Favourable physical features versus adverse biological effects, Carbohydrate Polymers, Vol. 121, 27–36. doi:10.1016/j.carbpol.2014.11.063
  13. Mokhtari, H., Tavakoli, S., Safarpour, F., Kharaziha, M., Bakhsheshi-Rad, H. R., Ramakrishna, S., Berto, F. (2021). Recent Advances in Chemically-Modified and Hybrid Carrageenan-Based Platforms for Drug Delivery, Wound Healing, and Tissue Engineering, Polymers, Vol. 13, No. 11, 1744. doi:10.3390/polym13111744
  14. Safitri, E., Humaira, H., Murniana, M., Nazaruddin, N., Iqhrammullah, M., Md Sani, N. D., Esmaeili, C., Susilawati, S., Mahathir, M., Latansa Nazaruddin, S. (2021). Optical pH Sensor Based on Immobilization Anthocyanin from Dioscorea alata L. onto Polyelectrolyte Complex Pectin–Chitosan Membrane for a Determination Method of Salivary pH, Polymers, Vol. 13, No. 8, 1276. doi:10.3390/polym13081276
  15. Pacheco-Quito, E.-M., Ruiz-Caro, R., Veiga, M.-D. (2020). Carrageenan: Drug Delivery Systems and Other Biomedical Applications, Marine Drugs, Vol. 18, No. 11, 583. doi:10.3390/md18110583

Downloads

Published

2023-06-10

How to Cite

Nisah, K., Fahrina, A., Rizki, D. R. and Puspita, K. (2023) “Optimization of Starch—κ-Carrageenan Hybrid Film as Drug Delivery System Using Response Surface Method”, Heca Journal of Applied Sciences, 1(1), pp. 19–23. doi: 10.60084/hjas.v1i1.10.

Issue

Section

Articles