QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer's Disease Using Ensemble Machine Learning Algorithms

Authors

  • Teuku Rizky Noviandy Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Aga Maulana Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Talha Bin Emran Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
  • Ghazi Mauer Idroes Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Rinaldi Idroes Department of Chemistry, Faculty of Mathematics and Natural Sciences Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/hjas.v1i1.12

Keywords:

Beta-secretase 1, Ensemble machine learning, Molecular descriptors, QSAR

Abstract

This study focuses on the development of a machine learning ensemble approach for the classification of Beta-Secretase 1 (BACE1) inhibitors in Quantitative Structure-Activity Relationship (QSAR) analysis. BACE1 is an enzyme linked to the production of amyloid beta peptide, a significant component of Alzheimer's disease plaques. The discovery of effective BACE1 inhibitors is difficult, but QSAR modeling offers a cost-effective alternative by predicting the activity of compounds based on their chemical structures. This study evaluates the performance of four machine learning models (Random Forest, AdaBoost, Gradient Boosting, and Extra Trees) in predicting BACE1 inhibitor activity. Random Forest achieved the highest performance, with a training accuracy of 98.65% and a testing accuracy of 82.53%. In addition, it exhibited superior precision, recall, and F1-score. Random Forest's superior performance was a result of its ability to capture a wide variety of patterns and its randomized ensemble approach. Overall, this study demonstrates the efficacy of ensemble machine learning models, specifically Random Forest, in predicting the activity of BACE1 inhibitors. The findings contribute to ongoing efforts in Alzheimer's disease drug discovery research by providing a cost-effective and efficient strategy for screening and prioritizing potential BACE1 inhibitors.

Downloads

Download data is not yet available.

References

  1. Cervellati, C., Trentini, A., Rosta, V., Passaro, A., Bosi, C., Sanz, J. M., Bonazzi, S., Pacifico, S., Seripa, D., Valacchi, G. (2020). Serum beta-secretase 1 (BACE1) activity as candidate biomarker for late-onset Alzheimer’s disease, GeroScience, Vol. 42, 159–167
  2. Moussa‐Pacha, N. M., Abdin, S. M., Omar, H. A., Alniss, H., Al‐Tel, T. H. (2020). BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease, Medicinal Research Reviews, Vol. 40, No. 1, 339–384
  3. Vassar, R. (2014). BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease, Alzheimer’s Research & Therapy, Vol. 6, No. 9, 1–14
  4. Das, S., Majumder, T., Sarkar, A., Mukherjee, P., Basu, S. (2020). Flavonoids as BACE1 inhibitors: QSAR modelling, screening and in vitro evaluation, International Journal of Biological Macromolecules, Vol. 165, 1323–1330
  5. Kumar, A., Roy, S., Tripathi, S., Sharma, A. (2016). Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis, Journal of Biomolecular Structure and Dynamics, Vol. 34, No. 2, 239–249
  6. Ponzoni, I., Sebastián-Pérez, V., Martínez, M. J., Roca, C., De la Cruz Pérez, C., Cravero, F., Vazquez, G. E., Páez, J. A., Díaz, M. F., Campillo, N. E. (2019). QSAR classification models for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer’s disease, Scientific Reports, Vol. 9, No. 1, 1–13
  7. Wu, Y., Huo, D., Chen, G., Yan, A. (2021). SAR and QSAR research on tyrosinase inhibitors using machine learning methods, SAR and QSAR in Environmental Research, Vol. 32, No. 2, 85–110. doi:10.1080/1062936X.2020.1862297
  8. Abdullahi, M., Shallangwa, G. A., Uzairu, A. (2020). In silico QSAR and molecular docking simulation of some novel aryl sulfonamide derivatives as inhibitors of H5N1 influenza A virus subtype, Beni-Suef University Journal of Basic and Applied Sciences, Vol. 9, No. 1, 2. doi:10.1186/s43088-019-0023-y
  9. Huang, T., Sun, G., Zhao, L., Zhang, N., Zhong, R., Peng, Y. (2021). Quantitative Structure-Activity Relationship (QSAR) Studies on the Toxic Effects of Nitroaromatic Compounds (NACs): A Systematic Review, International Journal of Molecular Sciences, Vol. 22, No. 16, 8557. doi:10.3390/ijms22168557
  10. Hesping, E., Chua, M. J., Pflieger, M., Qian, Y., Dong, L., Bachu, P., Liu, L., Kurz, T., Fisher, G. M., Skinner-Adams, T. S., Reid, R. C., Fairlie, D. P., Andrews, K. T., Gorse, A.-D. J. P. (2022). QSAR Classification Models for Prediction of Hydroxamate Histone Deacetylase Inhibitor Activity against Malaria Parasites, ACS Infectious Diseases, Vol. 8, No. 1, 106–117. doi:10.1021/acsinfecdis.1c00355
  11. Muratov, E. N., Bajorath, J., Sheridan, R. P., Tetko, I. V, Filimonov, D., Poroikov, V., Oprea, T. I., Baskin, I. I., Varnek, A., Roitberg, A. (2020). QSAR without borders, Chemical Society Reviews, Vol. 49, No. 11, 3525–3564
  12. Puzyn, T., Leszczynski, J., Cronin, M. T. (Eds.). (2010). Recent Advances in QSAR Studies (Vol. 8), Springer Netherlands, Dordrecht. doi:10.1007/978-1-4020-9783-6
  13. Kwon, S., Bae, H., Jo, J., Yoon, S. (2019). Comprehensive ensemble in QSAR prediction for drug discovery, BMC Bioinformatics, Vol. 20, No. 1, 521. doi:10.1186/s12859-019-3135-4
  14. Kurniawan, I., Rosalinda, M., Ikhsan, N. (2020). Implementation of ensemble methods on QSAR Study of NS3 inhibitor activity as anti-dengue agent, SAR and QSAR in Environmental Research, Vol. 31, No. 6, 477–492
  15. Wu, Z., Zhu, M., Kang, Y., Leung, E. L.-H., Lei, T., Shen, C., Jiang, D., Wang, Z., Cao, D., Hou, T. (2021). Do we need different machine learning algorithms for QSAR modeling? A comprehensive assessment of 16 machine learning algorithms on 14 QSAR data sets, Briefings in Bioinformatics, Vol. 22, No. 4, bbaa321
  16. Simeon, S., Anuwongcharoen, N., Shoombuatong, W., Malik, A. A., Prachayasittikul, V., Wikberg, J. E. S., Nantasenamat, C. (2016). Probing the origins of human acetylcholinesterase inhibition via QSAR modeling and molecular docking, PeerJ, Vol. 4, e2322
  17. Grisoni, F., Consonni, V., Todeschini, R. (2018). Impact of Molecular Descriptors on Computational Models, 171–209. doi:10.1007/978-1-4939-8639-2_5
  18. Moriwaki, H., Tian, Y.-S., Kawashita, N., Takagi, T. (2018). Mordred: a molecular descriptor calculator, Journal of Cheminformatics, Vol. 10, No. 1, 4. doi:10.1186/s13321-018-0258-y
  19. Goodarzi, M., Dejaegher, B., Heyden, Y. Vander. (2012). Feature selection methods in QSAR studies, Journal of AOAC International, Vol. 95, No. 3, 636–651
  20. Khaire, U. M., Dhanalakshmi, R. (2022). Stability of feature selection algorithm: A review, Journal of King Saud University-Computer and Information Sciences, Vol. 34, No. 4, 1060–1073
  21. Noviandy, T. R., Maulana, A., Sasmita, N. R., Suhendra, R., Irvanizam, I., Muslem, M., Idroes, G. M., Yusuf, M., Sofyan, H., Abidin, T. F., Idroes, R. (2022). The Prediction of Kovats Retention Indices of Essential Oils at Gas Chromatography Using Genetic Algorithm-Multiple Linear Regression and Support Vector Regression, Journal of Engineering Science and Technology
  22. Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., Sasmita, N. R., Muslem, M., Idroes, G. M., Kemala, P., Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index, International Review on Modelling and Simulations (IREMOS), Vol. 14, No. 2, 137. doi:10.15866/iremos.v14i2.20460
  23. Ying, C., Qi-Guang, M., Jia-Chen, L., Lin, G. (2013). Advance and prospects of AdaBoost algorithm, Acta Automatica Sinica, Vol. 39, No. 6, 745–758
  24. Natekin, A., Knoll, A. (2013). Gradient boosting machines, a tutorial, Frontiers in Neurorobotics, Vol. 7, 21
  25. Geurts, P., Ernst, D., Wehenkel, L. (2006). Extremely randomized trees, Machine Learning, Vol. 63, 3–42
  26. Tasci, E., Zhuge, Y., Kaur, H., Camphausen, K., Krauze, A. V. (2022). Hierarchical Voting-Based Feature Selection and Ensemble Learning Model Scheme for Glioma Grading with Clinical and Molecular Characteristics, International Journal of Molecular Sciences, Vol. 23, No. 22, 14155. doi:10.3390/ijms232214155

Downloads

Published

2023-05-30

How to Cite

Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M. and Idroes, R. (2023) “QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms”, Heca Journal of Applied Sciences, 1(1), pp. 1–7. doi: 10.60084/hjas.v1i1.12.

Issue

Section

Articles