Predictive Maintenance with Machine Learning: A Comparative Analysis of Wind Turbines and PV Power Plants

Authors

  • Uhanto Uhanto Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erkata Yandri Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erik Hilmi Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Rifki Saiful Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Nasrullah Hamja Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia

DOI:

https://doi.org/10.60084/hjas.v2i2.219

Keywords:

Operational data analysis, Failure prediction, Maintenance cost reduction, Component health monitoring, Energy efficiency optimization, Machine learning algorithms

Abstract

The transition to renewable energy requires innovations in new renewable energy sources, such as wind turbines and photovoltaic (PV) systems. Challenges arise in ensuring efficient and reliable performance in their operation and maintenance. Predictive maintenance using machine learning (PdM-ML) is relevant for addressing these challenges by enhancing failure predictions and reducing downtime. This study examines the effectiveness of PdM-ML in wind turbine and PV systems by analyzing operational data, performing data preprocessing, and developing machine learning models for each system. The results indicate that the model for wind turbines can predict failures in critical components such as gearboxes and blades with high accuracy. In contrast, the model for PV systems is effective in predicting efficiency declines in inverters and solar panels. Regarding operational complexity, each model has advantages and disadvantages of its own, but when compared to conventional maintenance techniques, both provide lower costs with greater operational efficiency. In conclusion, machine learning-based predictive maintenance is a promising solution for enhancing the reliability and efficiency of renewable energy systems.

Downloads

Download data is not yet available.

References

  1. Wang, H., Yang, X., Lou, Q., and Xu, X. (2021). Achieving a Sustainable Development Process by Deployment of Solar Pv Power in ASEAN: A Swot Analysis, Processes, Vol. 9, No. 4, 1–19. doi:10.3390/pr9040630.
  2. Idroes, G. M., Hardi, I., Noviandy, T. R., Sasmita, N. R., Hilal, I. S., Kusumo, F., and Idroes, R. (2023). A Deep Dive into Indonesia’s CO2 Emissions: The Role of Energy Consumption, Economic Growth and Natural Disasters, Ekonomikalia Journal of Economics, Vol. 1, No. 2, 69–81. doi:10.60084/eje.v1i2.115.
  3. Androniceanu, A., and Sabie, O. M. (2022). Overview of Green Energy as a Real Strategic Option for Sustainable Development, Energies, Vol. 15, No. 22, 1–35. doi:10.3390/en15228573.
  4. Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., and Idroes, R. (2024). The Dynamic Impact of Non-renewable and Renewable Energy on Carbon Dioxide Emissions and Ecological Footprint in Indonesia, Carbon Research, Vol. 3, No. 1, 35. doi:10.1007/s44246-024-00117-0.
  5. Idroes, G. M., Hardi, I., Hilal, I. S., Utami, R. T., Noviandy, T. R., and Idroes, R. (2024). Economic Growth and Environmental Impact: Assessing the Role of Geothermal Energy in Developing and Developed Countries, Innovation and Green Development, Vol. 3, No. 3, 100144. doi:10.1016/j.igd.2024.100144.
  6. Sun, Y. (2020). The Achievement, Significance and Future Prospect of China’s Renewable Energy Initiative, International Journal of Energy Research, Vol. 44, No. 15, 12209–12244. doi:10.1002/er.5243.
  7. Singh, A. K., and Idrisi, A. H. (2020). Evolution of Renewable Energy in India: Wind and Solar, Journal of The Institution of Engineers (India): Series C, Vol. 101, No. 2, 415–427. doi:10.1007/s40032-019-00545-7.
  8. Yandri, E., Suherman, S., Lomi, A., Setyobudi, R. H., Ariati, R., Pramudito, P., Ronald, R., Ardiani, Y., Burlakovs, J., Zahoor, M., Shah, L. A., Fauzi, A., Tonda, R., and Iswahyudi, I. (2024). Sustainable Energy Efficiency in Aluminium Parts Industries Utilizing Waste Heat and Equivalent Volume with Energy Management Control System, Proceedings of the Estonian Academy of Sciences, Vol. 73, No. 1, 29–42. doi:10.3176/proc.2024.1.04.
  9. Yandri, E., Hendroko Setyobudi, R., Susanto, H., Abdullah, K., Adhi Nugroho, Y., Krido Wahono, S., Wijayanto, F., and Nurdiansyah, Y. (2020). Conceptualizing Indonesia’s ICT-based Energy Security Tracking System with Detailed Indicators from Smart City Extension, E3S Web of Conferences, Vol. 188. doi:10.1051/e3sconf/202018800007.
  10. Garan, M., and Tidriri, K. (2022). A Data-Centric Machine Learning Methodology : Application, 1–21.
  11. Beretta, M., Julian, A., Sepulveda, J., Cusidó, J., and Porro, O. (2021). An Ensemble Learning Solution for Predicitive Manintenance of Wind Turbines Main Bearing, Sensors, Vol. 21, No. 4, 1–19. doi:10.3390/s21041512.
  12. Bosman, L. B., Leon-Salas, W. D., Hutzel, W., and Soto, E. A. (2020). PV System Predictive Maintenance: Challenges, Current Approaches, and Opportunities, Energies, Vol. 16, No. 3. doi:10.3390/en13061398.
  13. Osmani, K., Haddad, A., Lemenand, T., Castanier, B., and Ramadan, M. (2020). A Review on Maintenance Strategies for PV Systems, Science of the Total Environment, Vol. 746, 141753. doi:10.1016/j.scitotenv.2020.141753.
  14. Çinar, Z. M., Nuhu, A. A., Zeeshan, Q., Korhan, O., Asmael, M., and Safaei, B. (2020). Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0, Sustainability (Switzerland), Vol. 12, No. 19. doi:10.3390/su12198211.
  15. Abidi, M. H., Mohammed, M. K., and Alkhalefah, H. (2022). Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing, Sustainability (Switzerland), Vol. 14, No. 6. doi:10.3390/su14063387.
  16. Ledmaoui, Y., El Maghraoui, A., El Aroussi, M., Saadane, R., Chebak, A., and Chehri, A. (2023). Forecasting Solar Energy Production: A Comparative Study of Machine Learning Algorithms, Energy Reports, Vol. 10, 1004–1012. doi:10.1016/j.egyr.2023.07.042.
  17. Ramadhan, R. A. A., Heatubun, Y. R. J., Tan, S. F., and Lee, H. J. (2021). Comparison of Physical and Machine Learning Models for Estimating Solar Irradiance and Photovoltaic Power, Renewable Energy, Vol. 178, 1006–1019. doi:10.1016/j.renene.2021.06.079.
  18. Bamisile, O., Oluwasanmi, A., Obiora, S., Osei-Mensah, E., Asoronye, G., and Huang, Q. (2020). Application of Deep Learning for Solar Irradiance and Solar Photovoltaic Multi-parameter Forecast, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, Vol. 00, No. 00, 1–21. doi:10.1080/15567036.2020.1801903.
  19. Terashima, K., Sato, H., and Ikaga, T. (2023). PV/T Solar Panel for Supplying Residential Demands of Heating/Cooling and Hot Water with a Lower Environmental Thermal Load, Energy and Buildings, Vol. 297, No. July, 113408. doi:10.1016/j.enbuild.2023.113408.
  20. Dwivedi, P., Sudhakar, K., Soni, A., Solomin, E., and Kirpichnikova, I. (2020). Advanced Cooling Techniques of P.V. Modules: A State of Art, Case Studies in Thermal Engineering, Vol. 21, No. December 2019, 100674. doi:10.1016/j.csite.2020.100674.
  21. Dissawa, L. H., Godaliyadda, R. I., Ekanayake, P. B., Agalgaonkar, A. P., Robinson, D., Ekanayake, J. B., and Perera, S. (2021). Sky Image-Based Localized, Short-Term Solar Irradiance Forecasting for Multiple PV Sites via Cloud Motion Tracking, International Journal of Photoenergy, Vol. 2021. doi:10.1155/2021/9973010.
  22. Yandri, E., and Hagino, N. (2022). Joule Heating Estimation of Photovoltaic Module through Cells Temperature Measurement, International Journal of Power Electronics and Drive Systems, Vol. 13, No. 2, 1119–1128. doi:10.11591/ijpeds.v13.i2.pp1119-1128.
  23. Gunda, T., Hackett, S., Kraus, L., Downs, C., Jones, R., McNalley, C., Bolen, M., and Walker, A. (2020). A Machine Learning Evaluation of Maintenance Records for Common Failure Modes in PV Inverters, IEEE Access, Vol. 8, 211610–211620. doi:10.1109/ACCESS.2020.3039182.
  24. Alazazmeh, A., Ahmed, A., Siddiqui, M., and Asif, M. (2022). Real-Time Data-Based Performance Analysis of a Large-Scale Building Applied PV System, Energy Reports, Vol. 8, 15408–15420. doi:10.1016/j.egyr.2022.11.057.
  25. Meng, X., Gao, F., Xu, T., Zhou, K., Li, W., and Wu, Q. (2021). Inverter-Data-Driven Second-Level Power Forecasting for Photovoltaic Power Plant, IEEE Transactions on Industrial Electronics, Vol. 68, No. 8, 7034–7044. doi:10.1109/TIE.2020.3005098.
  26. Dhaked, D. K., Dadhich, S., and Birla, D. (2023). Power Output Forecasting of Solar Photovoltaic Plant Using LSTM, Green Energy and Intelligent Transportation, Vol. 2, No. 5. doi:10.1016/j.geits.2023.100113.
  27. Mahmud, K., Azam, S., Karim, A., Zobaed, S., Shanmugam, B., and Mathur, D. (2021). Machine Learning Based PV Power Generation Forecasting in Alice Springs, IEEE Access, Vol. 9, 46117–46128. doi:10.1109/ACCESS.2021.3066494.
  28. Fahim, M., Sharma, V., Cao, T. V., Canberk, B., and Duong, T. Q. (2022). Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines, IEEE Access, Vol. 10, 14184–14194. doi:10.1109/ACCESS.2022.3147602.
  29. Saint-Drenan, Y. M., Besseau, R., Jansen, M., Staffell, I., Troccoli, A., Dubus, L., Schmidt, J., Gruber, K., Simões, S. G., and Heier, S. (2020). A Parametric Model for Wind Turbine Power Curves Incorporating Environmental Conditions, Renewable Energy, Vol. 157, 754–768. doi:10.1016/j.renene.2020.04.123.
  30. Charabi, Y., and Abdul-Wahab, S. (2020). Wind Turbine Performance Analysis for Energy Cost Minimization, Renewables: Wind, Water, and Solar, Vol. 7, No. 1. doi:10.1186/s40807-020-00062-7.
  31. Sun, H., Qiu, C., Lu, L., Gao, X., Chen, J., and Yang, H. (2020). Wind Turbine Power Modelling and Optimization Using Artificial Neural Network with Wind Field Experimental Data, Applied Energy, Vol. 280, No. October, 115880. doi:10.1016/j.apenergy.2020.115880.
  32. Kumar, G. B. A., and Shivashankar. (2022). Optimal Power Point Tracking of Solar and Wind Energy in a Hybrid Wind Solar Energy System, International Journal of Energy and Environmental Engineering, Vol. 13, No. 1, 77–103. doi:10.1007/s40095-021-00399-9.
  33. Guo, Y., Sheng, S., Phillips, C., Keller, J., Veers, P., and Williams, L. (2020). A Methodology for Reliability Assessment and Prognosis of Bearing Axial Cracking in Wind Turbine Gearboxes, Renewable and Sustainable Energy Reviews, Vol. 127, No. May, 109888. doi:10.1016/j.rser.2020.109888.
  34. Fu, Z., Zhou, Z., Zhu, J., and Yuan, Y. (2023). Condition Monitoring Method for the Gearboxes of Offshore Wind Turbines Based on Oil Temperature Prediction, Energies, Vol. 16, No. 17. doi:10.3390/en16176275.
  35. Cheng, Z., Deng, Y., Wang, X., and Xie, Z. (2021). A Case Study of Industrial Data Analysis: Gearbox Temperature Prediction of Wind Turbines Using Ensemble Deep Learning Regression, 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, ICBAIE 2021, No. Icbaie, 1006–1009. doi:10.1109/ICBAIE52039.2021.9390053.
  36. Jin, X., Xu, Z., and Qiao, W. (2021). Condition Monitoring of Wind Turbine Generators Using SCADA Data Analysis, IEEE Transactions on Sustainable Energy, Vol. 12, No. 1, 202–210. doi:10.1109/TSTE.2020.2989220.
  37. Kushwah, K., Sahoo, S., and Joshuva, A. (2021). Health Monitoring of Wind Turbine Blades Through Vibration Signal Using Machine Learning Techniques, Lecture Notes in Networks and Systems, Vol. 170 LNNS, 239–247. doi:10.1007/978-981-33-4084-8_22.
  38. Zhao, Y., Pan, J., Huang, Z., Miao, Y., Jiang, J., and Wang, Z. (2020). Analysis of Vibration Monitoring Data of an Onshore Wind Turbine under Different Operational Conditions, Engineering Structures, Vol. 205, No. December 2019, 110071. doi:10.1016/j.engstruct.2019.110071.
  39. Neshat, M., Nezhad, M. M., Abbasnejad, E., Mirjalili, S., Groppi, D., Heydari, A., Tjernberg, L. B., Astiaso Garcia, D., Alexander, B., Shi, Q., and Wagner, M. (2021). Wind Turbine Power Output Prediction Using a New Hybrid Neuro-Evolutionary Method, Energy, Vol. 229, 120617. doi:10.1016/j.energy.2021.120617.
  40. Adedeji, P. A., Akinlabi, S., Madushele, N., and Olatunji, O. O. (2020). Wind Turbine Power Output Very Short-Term Forecast: A Comparative Study of Data Clustering Techniques in a PSO-ANFIS Model, Journal of Cleaner Production, Vol. 254. doi:10.1016/j.jclepro.2020.120135.
  41. Pandit, R. K., Astolfi, D., and Durazo Cardenas, I. (2023). A Review of Predictive Techniques Used to Support Decision Making for Maintenance Operations of Wind Turbines, Energies, Vol. 16, No. 4, 1–17. doi:10.3390/en16041654.
  42. Bouabdallaoui, Y., Lafhaj, Z., Yim, P., Ducoulombier, L., and Bennadji, B. (2021). Predictive Maintenance in Building Facilities: A Machine Learning-Based Approach, Sensors (Switzerland), Vol. 21, No. 4, 1–15. doi:10.3390/s21041044.
  43. Noviandy, T. R., Nisa, K., Idroes, G. M., Hardi, I., and Sasmita, N. R. (2024). Classifying Beta-Secretase 1 Inhibitor Activity for Alzheimer’s Drug Discovery with LightGBM, Journal of Computing Theories and Applications, Vol. 2, No. 2, 138–147. doi:10.62411/jcta.10129.
  44. Noviandy, T. R., Hardi, I., Zahriah, Z., Sofyan, R., Sasmita, N. R., Hilal, I. S., and Idroes, G. M. (2024). Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis, Leuser Journal of Environmental Studies, Vol. 2, No. 1, 41–51. doi:10.60084/ljes.v2i1.181.
  45. Sasmita, N. R., Khairul, M., Sofyan, H., Kruba, R., Mardalena, S., Dahlawy, A., Apriliansyah, F., Muliadi, M., Saputra, D. C. E., Noviandy, T. R., and Watsiq Maula, A. (2023). Statistical Clustering Approach: Mapping Population Indicators Through Probabilistic Analysis in Aceh Province, Indonesia, Infolitika Journal of Data Science, Vol. 1, No. 2, 63–72. doi:10.60084/ijds.v1i2.130.
  46. Noviandy, T. R., Maulana, A., Idroes, G. M., Emran, T. B., Tallei, T. E., Helwani, Z., and Idroes, R. (2023). Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review, Infolitika Journal of Data Science, Vol. 1, No. 1, 32–41. doi:10.60084/ijds.v1i1.91.
  47. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Enhancing Loan Approval Decision-Making: An Interpretable Machine Learning Approach Using LightGBM for Digital Economy Development, Malaysian Journal of Computing (MJOC), Vol. 9, No. 1, 1734–1745. doi:10.24191/mjoc.v9i1.25691.
  48. Theissler, A., Pérez-Velázquez, J., Kettelgerdes, M., and Elger, G. (2021). Predictive Maintenance Enabled by Machine Learning: Use Cases and Challenges in the Automotive Industry, Reliability Engineering and System Safety, Vol. 215, 107864. doi:10.1016/j.ress.2021.107864.
  49. Safhadi, A. A.-J., Noviandy, T. R., Irvanizam, I., Suhendra, R., Karma, T., and Idroes, R. (2024). Backpropagation Neural Network-Based Prediction of Kovats Retention Index for Essential Oil Compounds, Infolitika Journal of Data Science, Vol. 2, No. 1, 28–33. doi:10.60084/ijds.v2i1.197.
  50. Dzulkifli, N., Sarbini, N. N., Ibrahim, I. S., Abidin, N. I., Yahaya, F. M., and Nik Azizan, N. Z. (2021). Review on Maintenance Issues toward Building Maintenance Management Best Practices, Journal of Building Engineering, Vol. 44, No. July, 102985. doi:10.1016/j.jobe.2021.102985.
  51. Wang, X., Wang, H., Bhandari, B., and Cheng, L. (2024). AI-Empowered Methods for Smart Energy Consumption: A Review of Load Forecasting, Anomaly Detection and Demand Response, International Journal of Precision Engineering and Manufacturing - Green Technology, 963–993. doi:10.1007/s40684-023-00537-0.

Downloads

Published

2024-09-28

How to Cite

Uhanto, U., Yandri, E., Hilmi, E., Saiful, R. and Hamja, N. (2024) “Predictive Maintenance with Machine Learning: A Comparative Analysis of Wind Turbines and PV Power Plants”, Heca Journal of Applied Sciences, 2(2), pp. 87–98. doi: 10.60084/hjas.v2i2.219.