Potential for Electrical Energy Savings in AC Systems by Utilizing Exhaust Heat from Outdoor Unit

Authors

  • Nasrullah Hamja Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erkata Yandri Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erik Hilmi Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Uhanto Uhanto Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Rifki Saiful Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia

DOI:

https://doi.org/10.60084/hjas.v2i2.223

Keywords:

Renewable energy, Air conditioner, Thermoelectric generator, Waste heat optimization, Energy efficiency

Abstract

This study explores the potential of utilizing waste heat from air conditioning systems, one of the largest consumers of electrical energy. Currently, most of the waste heat generated by outdoor units is typically released into the environment without being utilized, leading to missed energy-saving opportunities. This study analyzes the potential for improving electrical energy efficiency in air conditioning (AC) systems by harnessing this waste heat. Two primary approaches are evaluated: the first is the use of waste heat for domestic water heating, and the second is the conversion of heat into electrical energy using thermoelectric generators (TEG). The results of this research indicate that both methods have the potential to improve overall energy efficiency significantly. However, challenges related to conversion efficiency and integration of these technologies with AC systems require further, more specific studies. These findings are expected to contribute to more efficient and environmentally friendly cooling systems by optimizing technology and overcoming barriers to wider implementation.

Downloads

Download data is not yet available.

References

  1. Randazzo, T., De Cian, E., and Mistry, M. N. (2020). Air Conditioning and Electricity Expenditure: The Role of Climate in Temperate Countries, Economic Modelling, Vol. 90, No. June 2019, 273–287. doi:10.1016/j.econmod.2020.05.001.
  2. Che, W. W., Tso, C. Y., Sun, L., Ip, D. Y. K., Lee, H., Chao, C. Y. H., and Lau, A. K. H. (2019). Energy Consumption, Indoor Thermal Comfort and Air Quality in a Commercial Office with Retrofitted Heat, Ventilation and Air Conditioning (HVAC) System, Energy and Buildings, Vol. 201, No. xxxx, 202–215. doi:10.1016/j.enbuild.2019.06.029.
  3. Yandri, E., Idroes, R., Maulana, A., and Zahriah, Z. (2023). Design Concept of Information Control Systems for Green Manufacturing Industries with IoT-Based Energy Efficiency and Productivity, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 9–17. doi:10.60084/ljes.v1i1.36.
  4. Yandri, E., Ariati, R., and Ibrahim, R. F. (2018). Meningkatkan Keamanan Energi Melalui Perincian Indikator Energi Terbarukan dan Efisiensi Guna Membangun Ketahanan Nasional Dari Daerah, Jurnal Ketahanan Nasional, Vol. 24, No. 2, 239. doi:10.22146/jkn.30999.
  5. Nurcahyanto, Simsek, Y., and Urmee, T. (2020). Opportunities and Challenges of Energy Service Companies to Promote Energy Efficiency Programs in Indonesia, Energy, Vol. 205, 117603. doi:10.1016/j.energy.2020.117603.
  6. Wahlroos, M., Pärssinen, M., Rinne, S., Syri, S., and Manner, J. (2018). Future Views on Waste Heat Utilization – Case of Data Centers in Northern Europe, Renewable and Sustainable Energy Reviews, Vol. 82, No. December 2016, 1749–1764. doi:10.1016/j.rser.2017.10.058.
  7. Chua, K. J., Chou, S. K., Yang, W. M., and Yan, J. (2013). Achieving Better Energy-Efficient Air Conditioning – A Review of Technologies and Strategies, Applied Energy, Vol. 104, 87–104. doi:10.1016/j.apenergy.2012.10.037.
  8. Chen, C., Mao, L., Lin, T., Tu, T., Zhu, L., and Wang, C. (2020). Performance Testing and Optimization of a Thermoelectric Elevator Car Air Conditioner, Case Studies in Thermal Engineering, Vol. 19, No. February, 100616. doi:10.1016/j.csite.2020.100616.
  9. Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., and Ismail, M. (2020). A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications, Energy Reports, Vol. 6, 264–287. doi:10.1016/j.egyr.2019.12.011.
  10. Irshad, K., Habib, K., Thirumalaiswamy, N., and Saha, B. B. (2015). Performance Analysis of a Thermoelectric Air Duct System for Energy-Efficient Buildings, Energy, Vol. 91, 1009–1017. doi:10.1016/j.energy.2015.08.102.
  11. Dong, Y., Coleman, M., and Miller, S. A. (2021). Greenhouse Gas Emissions from Air Conditioning and Refrigeration Service Expansion in Developing Countries, Annual Review of Environment and Resources, Vol. 46, 59–83. doi:10.1146/annurev-environ-012220-034103.
  12. Sovacool, B. K., Griffiths, S., Kim, J., and Bazilian, M. (2021). Climate Change and Industrial F-Gases: A Critical and Systematic Review of Developments, Sociotechnical Systems and Policy Options for Reducing Synthetic Greenhouse Gas Emissions, Renewable and Sustainable Energy Reviews, Vol. 141, No. August 2020, 110759. doi:10.1016/j.rser.2021.110759.
  13. Breyer, C., Khalili, S., Bogdanov, D., Ram, M., Oyewo, A. S., Aghahosseini, A., Gulagi, A., Solomon, A. A., Keiner, D., Lopez, G., Ostergaard, P. A., Lund, H., Mathiesen, B. V., Jacobson, M. Z., Victoria, M., Teske, S., Pregger, T., Fthenakis, V., Raugei, M., Holttinen, H., Bardi, U., Hoekstra, A., and Sovacool, B. K. (2022). On the History and Future of 100% Renewable Energy Systems Research, IEEE Access, Vol. 10, No. June, 78176–78218. doi:10.1109/ACCESS.2022.3193402.
  14. Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., and Idroes, R. (2024). The Dynamic Impact of Non-renewable and Renewable Energy on Carbon Dioxide Emissions and Ecological Footprint in Indonesia, Carbon Research, Vol. 3, No. 1, 35. doi:10.1007/s44246-024-00117-0.
  15. Yaakop, S. N., Md Fauadi, M. H. F., and Muhammad Damanhuri, A. A. (2023). Experimental Study on Heat Recovery of Air Dryer from Waste Heat Energy of Condensing Unit from VCRS Air Conditioner, Nature Environment and Pollution Technology, Vol. 22, No. 1, 149–157. doi:10.46488/NEPT.2023.V22I01.013.
  16. Oluleye, G., Jobson, M., and Smith, R. (2015). A Hierarchical Approach for Evaluating and Selecting Waste Heat Utilization Opportunities, Energy, Vol. 90, 5–23. doi:10.1016/j.energy.2015.05.086.
  17. Kang, S., Li, H., Lei, J., Liu, L., Cai, B., and Zhang, G. (2015). A New Utilization Approach of the Waste Heat with Mid-Low Temperature in the Combined Heating and Power System Integrating Heat Pump, Applied Energy, Vol. 160, 185–193. doi:10.1016/j.apenergy.2015.09.054.
  18. He, T., and Lin, W. (2020). Energy Saving Research of Natural Gas Liquefaction Plant Based on Waste Heat Utilization of Gas Turbine Exhaust, Energy Conversion and Management, Vol. 225, No. September, 113468. doi:10.1016/j.enconman.2020.113468.
  19. Li, Y., Mi, P., Li, W., and Zhang, S. (2018). Full Operating Conditions Optimization Study of New Co-Generation Heating System Based on Waste Heat Utilization of Exhausted Steam, Energy Conversion and Management, Vol. 155, No. October 2017, 91–99. doi:10.1016/j.enconman.2017.10.081.
  20. Su, Z., Zhang, M., Xu, P., Zhao, Z., Wang, Z., Huang, H., and Ouyang, T. (2021). Opportunities and Strategies for Multigrade Waste Heat Utilization in Various Industries: A Recent Review, Energy Conversion and Management, Vol. 229, No. August 2020, 113769. doi:10.1016/j.enconman.2020.113769.
  21. Haywood, A. M., Sherbeck, J., Phelan, P., Varsamopoulos, G., and Gupta, S. K. S. (2015). The Relationship among CPU Utilization, Temperature, and Thermal Power for Waste Heat Utilization, Energy Conversion and Management, Vol. 95, 297–303. doi:10.1016/j.enconman.2015.01.088.
  22. Setyawan, A. (2020). Effect of Air Flow Obstruction in a Condensing Unit on Split Air Conditioner Performance, Jurnal Teknologi, Vol. 82, No. 5, 23–30. doi:10.11113/jt.v82.14185.
  23. Poojeera, S., Srichat, A., Naphon, N., and Naphon, P. (2022). Study on Thermal Performance of the Small-Scale Air Conditioning with Thermoelectric Cooling Module, Mathematical Modelling of Engineering Problems, Vol. 9, No. 4, 1143–1151. doi:10.18280/mmep.090434.
  24. AlQdah, K., Alsaqoor, S., and Al-Jarrah, A. (2010). Design and Fabrication of Auto Air Conditioner Generator Utilizing Exhaust Waste Energy from a Diesel Engine, International Journal of Thermal and Environmental Engineering, Vol. 3, No. 2, 87–93. doi:10.5383/ijtee.03.02.005.
  25. Rongdi, Y., Qin, Z., Dian, Y., and Guoping, H. (2018). A Heat-Pump Air Conditioner based on Waste Heat Recovery Strategy for Hybrid Vehicles, IOP Conference Series: Materials Science and Engineering, Vol. 439, No. 5. doi:10.1088/1757-899X/439/5/052008.
  26. Attar, A., Lee, H. S., and Weera, S. (2015). Experimental Validation of the Optimum Design of an Automotive Air-to-Air Thermoelectric Air Conditioner (TEAC), Journal of Electronic Materials, Vol. 44, No. 6, 2177–2185. doi:10.1007/s11664-015-3750-4.
  27. Liu, Q., Wei, F., Li, G., Kan, Z., Yang, J., Zhu, H., Wang, B., and Zhao, H. (2022). Highly Efficient Thermoelectric Air Conditioner with Kilowatt Capacity Realized by Ground Source Heat-Exchanging System, IScience, Vol. 25, No. 5, 104296. doi:10.1016/j.isci.2022.104296.
  28. Attar, A., and Lee, H. S. (2016). Designing and Testing the Optimum Design of Automotive Air-to-Air Thermoelectric Air Conditioner (Teac) System, Energy Conversion and Management, Vol. 112, 328–336. doi:10.1016/j.enconman.2016.01.029.
  29. Dizaji, H. S., Jafarmadar, S., and Khalilarya, S. (2019). Novel Experiments on Cop Improvement of Thermoelectric Air Coolers, Energy Conversion and Management, Vol. 187, No. March, 328–338. doi:10.1016/j.enconman.2019.03.025.
  30. Wiriyasart, S., Hommalee, C., and Naphon, P. (2019). Thermal Cooling Enhancement of Dual Processors Computer with Thermoelectric Air Cooler Module, Case Studies in Thermal Engineering, Vol. 14, No. April, 100445. doi:10.1016/j.csite.2019.100445.
  31. Atmaca, İ., Şenol, A., and Çağlar, A. (2022). Performance Testing and Optimization of a Split-Type Air Conditioner with Evaporatively-Cooled Condenser, Engineering Science and Technology, an International Journal, Vol. 32. doi:10.1016/j.jestch.2021.09.010.
  32. Cakir, A. K., and Sansli, B. (2020). Conducting Exergy Analysis by Utilizing Condenser Waste Heat in Commercial Type Split Air Conditioner: A Case Study, SN Applied Sciences, Vol. 2, No. 2, 1–11. doi:10.1007/s42452-020-1965-3.
  33. She, X., Cong, L., Nie, B., Leng, G., Peng, H., Chen, Y., Zhang, X., Wen, T., Yang, H., and Luo, Y. (2018). Energy-Efficient and -Economic Technologies for Air Conditioning with Vapor Compression Refrigeration: A Comprehensive Review, Applied Energy, Vol. 232, No. September, 157–186. doi:10.1016/j.apenergy.2018.09.067.
  34. Ketwong, W., Deethayat, T., and Kiatsiriroat, T. (2021). Performance Enhancement of Air Conditioner in Hot Climate by Condenser Cooling with Cool Air Generated by Direct Evaporative Cooling, Case Studies in Thermal Engineering, Vol. 26, No. January, 101127. doi:10.1016/j.csite.2021.101127.
  35. Yandri, E., Pramudito, P., Ronald, R., Ardiani, Y., Ariati, R., Setyobudi, R. H., Widodo, W., Zahoor, M., Zekker, I., and Lomi, A. (2022). Technical Design of Aluminium Scrap Processing Machines by Utilizing Direct Exhaust Air Using Conveyor Drying System, Proceedings of the Estonian Academy of Sciences, Vol. 71, No. 2, 178–185. doi:10.3176/proc.2022.2.01.
  36. Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F., and Chiolerio, A. (2020). Waste Heat to Power: Technologies, Current Applications, and Future Potential, Energy Technology, Vol. 8, No. 11, 1–22. doi:10.1002/ente.202000413.
  37. Zajacs, A., Bogdanovics, R., and Borodinecs, A. (2020). Analysis of Low Temperature Lift Heat Pump Application in a District Heating System for Flue Gas Condenser Efficiency Improvement, Sustainable Cities and Society, Vol. 57, No. March, 102130. doi:10.1016/j.scs.2020.102130.
  38. Kwak, Y., Hwang, S., and Jeong, J. H. (2020). Effect of Part Load Operating Conditions of an Air Conditioner on the Number of Refrigerant Paths and Heat Transfer Performance of a Condenser, Energy Conversion and Management, Vol. 203, No. November, 112257. doi:10.1016/j.enconman.2019.112257.
  39. Si, Z., Han, D., Gu, J., Song, Y., and Liu, Y. (2020). Exergy Analysis of a Vacuum Membrane Distillation System Integrated with Mechanical Vapor Recompression for Sulfuric Acid Waste Treatment, Applied Thermal Engineering, Vol. 178, No. February, 115516. doi:10.1016/j.applthermaleng.2020.115516.
  40. Mateu-Royo, C., Arpagaus, C., Mota-Babiloni, A., Navarro-Esbrí, J., and Bertsch, S. S. (2021). Advanced High Temperature Heat Pump Configurations Using Low Gwp Refrigerants for Industrial Waste Heat Recovery: A Comprehensive Study, Energy Conversion and Management, Vol. 229, No. December 2020. doi:10.1016/j.enconman.2020.113752.
  41. Lin, J., Guo, N., Hong, L., Wu, J., Jiang, J., and Zhao, T. (2022). Simulation of Single and Two-Phase Refrigerant Compression in Rotary Compressors, Applied Thermal Engineering, Vol. 211, No. December 2021, 118465. doi:10.1016/j.applthermaleng.2022.118465.
  42. Alsouda, F., Bennett, N. S., Saha, S. C., Salehi, F., and Islam, M. S. (2023). Vapor Compression Cycle: A State-of-the-Art Review on Cycle Improvements, Water and Other Natural Refrigerants, Clean Technologies, Vol. 5, No. 2, 584–608. doi:10.3390/cleantechnol5020030.
  43. McLinden, M. O., Seeton, C. J., and Pearson, A. (2020). New Refrigerants and System Configurations for Vapor-Compression Refrigeration, Science, Vol. 370, No. 6518, 791–796. doi:10.1126/science.abe3692.
  44. Abishai, L. D., Surejlal, M. E., Harish, S. S., and Prabu, S. S. (2021). Investigation on the Effect of Thermal Properties by Change in Materials of the Air Conditioner Condenser Tube Using Simulation, Materials Today: Proceedings, Vol. 45, 2671–2677. doi:10.1016/j.matpr.2020.11.520.
  45. Zhang, J., Elmegaard, B., and Haglind, F. (2021). Condensation Heat Transfer and Pressure Drop Correlations in Plate Heat Exchangers for Heat Pump and Organic Rankine Cycle Systems, Applied Thermal Engineering, Vol. 183, No. P2, 116231. doi:10.1016/j.applthermaleng.2020.116231.
  46. Zaki, O. M., and Abdelaziz, O. (2024). Critical Assessment of R410A Alternatives for Mini-Split Air Conditioners in the Egyptian Market, Energy and Built Environment, Vol. 5, No. 3, 426–445. doi:10.1016/j.enbenv.2023.01.003.
  47. Farhat, O., Faraj, J., Hachem, F., Castelain, C., and Khaled, M. (2022). A Recent Review on Waste Heat Recovery Methodologies and Applications: Comprehensive Review, Critical Analysis and Potential Recommendations, Cleaner Engineering and Technology, Vol. 6, 100387. doi:10.1016/j.clet.2021.100387.
  48. Chen, Q., Kum Ja, M., Burhan, M., Akhtar, F. H., Shahzad, M. W., Ybyraiymkul, D., and Ng, K. C. (2021). A Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression Process for Energy-Efficient Air Conditioning, Energy Conversion and Management, Vol. 248, No. July, 114798. doi:10.1016/j.enconman.2021.114798.
  49. Kundan, L., and Singh, K. (2021). Improved Performance of a Nanorefrigerant-Based Vapor Compression Refrigeration System: A New Alternative, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 235, No. 1, 106–123. doi:10.1177/0957650920904553.
  50. Liu, X., Quang Nguyen, M., and He, M. (2020). Performance Analysis and Optimization of an Electricity-Cooling Cogeneration System for Waste Heat Recovery of Marine Engine, Energy Conversion and Management, Vol. 214, No. February, 112887. doi:10.1016/j.enconman.2020.112887.
  51. Yandri, E., Suherman, S., Lomi, A., Setyobudi, R. H., Ariati, R., Pramudito, P., Ronald, R., Ardiani, Y., Burlakovs, J., Zahoor, M., Shah, L. A., Fauzi, A., Tonda, R., and Iswahyudi, I. (2024). Sustainable Energy Efficiency in Aluminium Parts Industries Utilizing Waste Heat and Equivalent Volume with Energy Management Control System, Proceedings of the Estonian Academy of Sciences, Vol. 73, No. 1, 29–42. doi:10.3176/proc.2024.1.04.

Downloads

Published

2024-09-26

How to Cite

Hamja, N., Yandri, E., Hilmi, E., Uhanto, U. and Saiful, R. (2024) “Potential for Electrical Energy Savings in AC Systems by Utilizing Exhaust Heat from Outdoor Unit”, Heca Journal of Applied Sciences, 2(2), pp. 64–73. doi: 10.60084/hjas.v2i2.223.