Utilization Strategy of Discharged Seawater from Power Plant Cooling System to Reduce Energy Consumption: A Process Engineering Approach

Authors

  • Clizardo Amaral Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erkata Yandri Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Omrie Ludji Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Rendy Sidharta Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Ayub Timba Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Ratna Ariati Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia

DOI:

https://doi.org/10.60084/hjas.v3i2.309

Keywords:

Steam power plant efficiency, Cooling water reutilization, Hydropower generation, Energy conservation, Environmental sustainability

Abstract

Steam power plants are among the primary sources of electricity generation; however, they face significant challenges in terms of energy efficiency and environmental impact due to their high consumption of coal. Innovative strategies are required to reduce emissions and improve system efficiency. One potential approach is the reutilization of condenser cooling water to drive a hydropower turbine before being discharged into the sea. By harnessing the head and flow rate of this water, the kinetic energy from the waste stream can be converted into additional electricity. This study examines a process engineering approach to integrating a hydropower generation system with a steam power plant, encompassing technical analysis, energy efficiency, as well as economic and environmental impacts. Simulation results indicate that the system is capable of generating between 14.2 and 49.5 kW of power, depending on operating conditions and water availability. The electricity produced can be utilized for internal Steam power plant needs, such as cooling pumps and lighting, thereby reducing dependence on coal combustion. This strategy not only improves energy efficiency and reduces operational costs but also supports environmental conservation and the long-term sustainability of power plant operations.

Downloads

Download data is not yet available.

References

  1. Ang, T. Z., Salem, M., Kamarol, M., Das, H. S., Nazari, M. A., and Prabaharan, N. (2022). A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions, Energy Strategy Reviews, Vol. 43, No. August, 100939. doi:10.1016/j.esr.2022.100939.
  2. Khalid Mohammed Ridha, W., Reza Kashyzadeh, K., and Ghorbani, S. (2023). Common Failures in Hydraulic Kaplan Turbine Blades and Practical Solutions, Materials, Vol. 16, No. 9. doi:10.3390/ma16093303.
  3. Kabiri, S., Khoshgoftar Manesh, M. H., and Amidpour, M. (2020). 4E Analysis and Evaluation of a Steam Power Plant Full Repowering in Various Operations, Energy Sources, Part A: Recovery, Utilization and Environmental Effects, Vol. 00, No. 00, 1–21. doi:10.1080/15567036.2020.1761484.
  4. Mostafaeipour, A., Bidokhti, A., Fakhrzad, M. B., Sadegheih, A., and Zare Mehrjerdi, Y. (2022). A New Model for the Use of Renewable Electricity to Reduce Carbon Dioxide Emissions, Energy, Vol. 238, 121602. doi:10.1016/j.energy.2021.121602.
  5. Bartnik, R., Buryn, Z., and Hnydiuk-Stefan, A. (2023). Comparative Thermodynamic and Economic Analysis of a Conventional Gas-Steam Power Plant with a Modified Gas-Steam Power Plant, Energy Conversion and Management, Vol. 293, No. May, 117502. doi:10.1016/j.enconman.2023.117502.
  6. Biedunkova, O., Kuznietsov, P., and Korbutiak, V. (2024). Evaluation of Return Cooling Water Reuse in the Wet Cooled Power Plant to Minimise the Impact of Water Intake and Drainage, Sustainable Chemistry for the Environment, Vol. 7, 100151.
  7. Prado de Nicolás, A., Molina-García, Á., García-Bermejo, J. T., and Vera-García, F. (2023). Desalination, Minimal and Zero Liquid Discharge Powered by Renewable Energy Sources: Current Status and Future Perspectives, Renewable and Sustainable Energy Reviews, Vol. 187, No. July, 113733. doi:10.1016/j.rser.2023.113733.
  8. Teguh, N. H., Yuliati, L., and Darmadi, D. B. (2022). Effect of Seawater Temperature Rising to the Performance of Northern Gorontalo Small Scale Power Plant, Case Studies in Thermal Engineering, Vol. 32, No. August 2021, 101858. doi:10.1016/j.csite.2022.101858.
  9. Cheng, F., Zhang, Y., Zhang, G., Zhang, K., Wu, J., and Zhang, D. (2024). Eliminating Environmental Impact of Coal Mining Wastes and Coal Processing By-Products by High Temperature Oxy-Fuel CFB Combustion for Clean Power Generation: A Review, Fuel, Vol. 373, No. June, 132341. doi:10.1016/j.fuel.2024.132341.
  10. Quaranta, E., and Davies, P. (2022). Emerging and Innovative Materials for Hydropower Engineering Applications: Turbines, Bearings, Sealing, Dams and Waterways, and Ocean Power, Engineering, Vol. 8, 148–158. doi:10.1016/j.eng.2021.06.025.
  11. Katal, A., Dahiya, S., and Choudhury, T. (2023). Energy Efficiency in Cloud Computing Data Centers: A Survey on Software Technologies, Cluster Computing (Vol. 26), Springer US. doi:10.1007/s10586-022-03713-0.
  12. Gopinathan, P., Subramani, T., Barbosa, S., and Yuvaraj, D. (2023). Environmental Impact and Health Risk Assessment Due to Coal Mining and Utilization, Environmental Geochemistry and Health, Vol. 45, No. 10, 6915–6922. doi:10.1007/s10653-023-01744-z.
  13. Ainou, F. Z., Ali, M., and Sadiq, M. (2023). Green Energy Security Assessment in Morocco: Green Finance as a Step toward Sustainable Energy Transition, Environmental Science and Pollution Research, Vol. 30, No. 22, 61411–61429. doi:10.1007/s11356-022-19153-7.
  14. Smolarz, A., Lezhniuk, P., Kudrya, S., Komar, V., Lysiak, V., Hunko, I., Amirgaliyeva, S., Smailova, S., and Orazbekov, Z. (2023). Increasing Technical Efficiency of Renewable Energy Sources in Power Systems, Energies, Vol. 16, No. 6. doi:10.3390/en16062828.
  15. Yandri, E., Ariati, R., Saepul Uyun, A., Hendroko Setyobudi, R., Susanto, H., Abdullah, K., Krido Wahono, S., Adhi Nugroho, Y., Yaro, A., and Burlakovs, J. (2020). Potential Energy Efficiency and Solar Energy Applications in a Small Industrial Laundry: A Practical Study of Energy Audit, E3S Web of Conferences, Vol. 190. doi:10.1051/e3sconf/202019000008.
  16. Alsobhi, M., Sachdev, H. S., Chevidikunnan, M. F., Basuodan, R., KU, D. K., and Khan, F. (2022). Facilitators and Barriers of Artificial Intelligence Applications in Rehabilitation: A Mixed-Method Approach, International Journal of Environmental Research and Public Health, Vol. 19, No. 23, 15919.
  17. Quaranta, E., Bahreini, A., Riasi, A., and Revelli, R. (2022). The Very Low Head Turbine for Hydropower Generation in Existing Hydraulic Infrastructures: State of the Art and Future Challenges, Sustainable Energy Technologies and Assessments, Vol. 51, No. January, 101924. doi:10.1016/j.seta.2021.101924.
  18. Tomović, M., Gajić, M., Klimenta, D., and Jevtić, M. (2023). Optimal Design of a Hybrid Power System for a Remote Fishpond Based on Hydro-Turbine Performance Parameters, Electronics, Vol. 12, No. 20, 4254.
  19. Byers, E. A., Hall, J. W., and Amezaga, J. M. (2014). Electricity Generation and Cooling Water Use: UK Pathways to 2050, Global Environmental Change, Vol. 25, No. 1, 16–30. doi:10.1016/j.gloenvcha.2014.01.005.
  20. Goswami, S. (2015). Impact of Coal Mining on Environment, European Researcher, Vol. 92, No. 3, 185–196. doi:10.13187/er.2015.92.185.
  21. Lavrenchenko, G. K., Slinko, A. G., Boychuk, A. S., Halkin, V. M., and Kozlovskyi, S. V. (2023). Improved Thermodynamic Cycle of a Steam Turbine Plant, Journal of Chemistry and Technologies, Vol. 31, No. 1, 178–185. doi:10.15421/jchemtech.v31i1.274768.
  22. Lee, F. Z., Lai, J. S., Katayama, K., Tomimatsu, S., and Yang, S. Y. (2022). Physical Model Setup and Tests on Cooling Circulation Water Pumping Intake System, Journal of Physics: Conference Series, Vol. 2217, No. 1. doi:10.1088/1742-6596/2217/1/012067.
  23. Tavana, M., Deymi-Dashtebayaz, M., Dadpour, D., and Mohseni-Gharyehsafa, B. (2023). Realistic Energy, Exergy, and Exergoeconomic (3E) Characterization of a Steam Power Plant: Multi-Criteria Optimization Case Study of Mashhad Tous Power Plant, Water (Switzerland), Vol. 15, No. 17. doi:10.3390/w15173039.
  24. Komarov, I., Rogalev, N., Rogalev, A., Kindra, V., Lisin, E., and Osipov, S. (2022). Technological Solutions in the Field of Production and Use of Hydrogen Fuel to Increase the Thermal Efficiency of Steam Turbine TPPs, Inventions, Vol. 7, No. 3. doi:10.3390/inventions7030063.
  25. Görtz, J., Aouad, M., Wieprecht, S., and Terheiden, K. (2022). Assessment of Pumped Hydropower Energy Storage Potential along Rivers and Shorelines, Renewable and Sustainable Energy Reviews, Vol. 165, No. December 2021, 112027. doi:10.1016/j.rser.2021.112027.
  26. Bragalli, C., Micocci, D., and Naldi, G. (2023). On the Influence of Net Head and Efficiency Fluctuations over the Performance of Existing Run-of-River Hydropower Plants, Renewable Energy, Vol. 206, No. October 2022, 1170–1179. doi:10.1016/j.renene.2023.02.081.
  27. Chaulagain, R. K., Poudel, L., and Maharjan, S. (2023). A Review on Non-Conventional Hydropower Turbines and Their Selection for Ultra-Low-Head Applications, Heliyon, Vol. 9, No. 7, e17753. doi:10.1016/j.heliyon.2023.e17753.
  28. Jamali, R., Sohani, A., Hemmatpour, K., Behrang, M., and Ghobeity, A. (2022). Experimental Study of Pressure Pulsation in a Large-Scale Hydropower Plant with Francis Turbine Units and a Common Penstock, Energy Conversion and Management: X, Vol. 16, No. October, 100308. doi:10.1016/j.ecmx.2022.100308.
  29. Hoffstaedt, J. P., Truijen, D. P. K., Fahlbeck, J., Gans, L. H. A., Qudaih, M., Laguna, A. J., De Kooning, J. D. M., Stockman, K., Nilsson, H., Storli, P. T., Engel, B., Marence, M., and Bricker, J. D. (2022). Low-Head Pumped Hydro Storage: A Review of Applicable Technologies for Design, Grid Integration, Control and Modelling, Renewable and Sustainable Energy Reviews, Vol. 158, No. January, 112119. doi:10.1016/j.rser.2022.112119.
  30. Jørgensen, K. N. (2023). Modelling and Analysis of Long Cables on the Generator Side of Generator Transformers, UiT Norges arktiske universitet.
  31. Azimov, U., and Avezova, N. (2022). Sustainable Small-Scale Hydropower Solutions in Central Asian Countries for Local and Cross-Border Energy/Water Supply, Renewable and Sustainable Energy Reviews, Vol. 167, No. April, 112726. doi:10.1016/j.rser.2022.112726.
  32. Maika, N., Lin, W., and Khatamifar, M. (2023). A Review of Gravitational Water Vortex Hydro Turbine Systems for Hydropower Generation, Energies, Vol. 16, No. 14. doi:10.3390/en16145394.
  33. Darsono, F. B., Widodo, R. D., Rusiyanto, and Nurdin, A. (2022). Analysis Of the Effect of Flow Rate and Speed on Four Blade Tubular Water Bulb-Turbine Efficiency Using Numerical Flow Simulation, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 90, No. 2, 1–8. doi:10.37934/arfmts.90.2.18.
  34. Maraj, A., Kërtusha, X., and Lushnjari, A. (2022). Energy Performance Evaluation for a Floating Photovoltaic System Located on the Reservoir of a Hydro Power Plant under the Mediterranean Climate Conditions during a Sunny Day and a Cloudy-One, Energy Conversion and Management: X, Vol. 16, No. April. doi:10.1016/j.ecmx.2022.100275.
  35. Jiang, Y., Raji, A. P., Raja, V., Wang, F., Al-Bonsrulah, H. A. Z., Murugesan, R., and Ranganathan, S. (2022). Multi–Disciplinary Optimizations of Small-Scale Gravitational Vortex Hydropower (SGVHP) System through Computational Hydrodynamic and Hydro–Structural Analyses, Sustainability (Switzerland), Vol. 14, No. 2. doi:10.3390/su14020727.
  36. Larki, I., Zahedi, A., Asadi, M., Forootan, M. M., Farajollahi, M., Ahmadi, R., and Ahmadi, A. (2023). Mitigation Approaches and Techniques for Combustion Power Plants Flue Gas Emissions: A Comprehensive Review, Science of The Total Environment, Vol. 903, 166108.
  37. Singh, B. J., Chakraborty, A., and Sehgal, R. (2023). A Systematic Review of Industrial Wastewater Management: Evaluating Challenges and Enablers, Journal of Environmental Management, Vol. 348, 119230.
  38. Perduková, D., Fedor, P., and Fedor, M. (2023). Hydraulic Turbine Modelling Including a Fuzzy Model of Efficiency, Acta Electrotechnica et Informatica, Vol. 23, No. 1, 25–31. doi:10.2478/aei-2023-0004.
  39. Chaudhari, B., Panda, B., Šavija, B., and Chandra Paul, S. (2022). Microbiologically Induced Concrete Corrosion: A Concise Review of Assessment Methods, Effects, and Corrosion-Resistant Coating Materials, Materials, Vol. 15, No. 12, 4279.
  40. Rückle, D., Schellenberg, G., Ottens, W., Leibing, B., and Locquenghien, F. (2022). Corrosion Fatigue of CrNi13-4 Martensitic Stainless Steel for Francis Runners in Dependency of Water Quality, Proceedings of the Eurocorr.
  41. Chaudhuri, A., Datta, R., Kumar, M. P., Davim, J. P., and Pramanik, S. (2022). Energy Conversion Strategies for Wind Energy System: Electrical, Mechanical and Material Aspects, Materials, Vol. 15, No. 3, 1–34. doi:10.3390/ma15031232.
  42. Sadeghi, G. (2022). Energy Storage on Demand: Thermal Energy Storage Development, Materials, Design, and Integration Challenges, Energy Storage Materials, Vol. 46, 192–222.
  43. Geurtsen, M., Didden, J. B. H. C., Adan, J., Atan, Z., and Adan, I. (2023). Production, Maintenance and Resource Scheduling: A Review, European Journal of Operational Research, Vol. 305, No. 2, 501–529. doi:10.1016/j.ejor.2022.03.045.
  44. Shabani, S., and Majkut, M. (2024). CFD Approach for Determining the Losses in Two-Phase Flows through the Last Stage of Condensing Steam Turbine, Applied Thermal Engineering, Vol. 253, 123809.
  45. Moraga, G., Mut, V., Girardelo, J., Mazzouji, F., Valentín, D., Egusquiza, M., Egusquiza, E., and Presas, A. (2024). Excessive Vibrations Experienced in a Kaplan Turbine at Speed No Load, Engineering Failure Analysis, Vol. 160, No. February. doi:10.1016/j.engfailanal.2024.108228.
  46. Uhanto, U., Yandri, E., Hilmi, E., Saiful, R., and Hamja, N. (2024). Predictive Maintenance with Machine Learning: A Comparative Analysis of Wind Turbines and PV Power Plants, Heca Journal of Applied Sciences, Vol. 2, No. 2, 87–98. doi:10.60084/hjas.v2i2.219.
  47. Pinciroli, L., Baraldi, P., and Zio, E. (2023). Maintenance Optimization in Industry 4.0, Reliability Engineering and System Safety, Vol. 234, No. February, 109204. doi:10.1016/j.ress.2023.109204.
  48. Osman, A. I., Chen, L., Yang, M., Msigwa, G., Farghali, M., Fawzy, S., Rooney, D. W., and Yap, P. S. (2023). Cost, Environmental Impact, and Resilience of Renewable Energy under a Changing Climate: A Review, Environmental Chemistry Letters, Vol. 21, No. 2, 741–764. doi:10.1007/s10311-022-01532-8.
  49. Yandri, E., Pramono, K. P., Sihombing, V., Effendi, L. H., Ardianto, D., Setyobudi, R. H., Suherman, S., Wahono, S. K., Wibowo, H., Garfansa, M. P., and Farzana, A. R. (2024). Recent Research Progress on Sustainable Energy Management System Based on Energy Efficiency and Renewable Energy, BIO Web of Conferences, Vol. 104. doi:10.1051/bioconf/202410400012.
  50. Chantasiriwan, S. (2022). Investigation of the Use of Steam Coil Preheater to Increase the Net Efficiency of Thermal Power Plant, Case Studies in Thermal Engineering, Vol. 38, No. May, 102344. doi:10.1016/j.csite.2022.102344.
  51. Smoliński, A., Wojtacha-Rychter, K., Król, M., Magdziarczyk, M., Polański, J., and Howaniec, N. (2022). Co-Gasification of Refuse-Derived Fuels and Bituminous Coal with Oxygen/Steam Blend to Hydrogen Rich Gas, Energy, Vol. 254. doi:10.1016/j.energy.2022.124210.
  52. Rostamzadeh, H., Rostami, S., Amidpour, M., He, W., and Han, D. (2021). Seawater Desalination via Waste Heat Recovery from Generator of Wind Turbines: How Economical Is It to Use a Hybrid HDH-RO Unit?, Sustainability, Vol. 13, No. 14, 7571.
  53. Assareh, E., Delpisheh, M., Alirahmi, S. M., Tafi, S., and Carvalho, M. (2022). Thermodynamic-Economic Optimization of a Solar-Powered Combined Energy System with Desalination for Electricity and Freshwater Production, Smart Energy, Vol. 5, 100062.
  54. Shafieian, A., and Khiadani, M. (2020). A Multipurpose Desalination, Cooling, and Air-Conditioning System Powered by Waste Heat Recovery from Diesel Exhaust Fumes and Cooling Water, Case Studies in Thermal Engineering, Vol. 21, 100702.

Downloads

Published

2025-06-23

How to Cite

Amaral, C., Yandri, E., Ludji, O., Sidharta, R., Timba, A. and Ariati, R. (2025) “Utilization Strategy of Discharged Seawater from Power Plant Cooling System to Reduce Energy Consumption: A Process Engineering Approach”, Heca Journal of Applied Sciences, 3(2), pp. 77–86. doi: 10.60084/hjas.v3i2.309.