Structural Feasibility Assessment of an Adjustable-Height Photovoltaic Mounting System Using Conceptual Design and Finite Element Simulation

Authors

  • Muhammad Ihsan Nur Faizin Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Erkata Yandri Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia; Center of Renewable Energy Studies, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia

DOI:

https://doi.org/10.60084/hjas.v4i1.383

Keywords:

Static structural analysis, Modular mounting architecture, Mechanical height adjustment, Safety factor evaluation, Balance-of-system components

Abstract

The performance of photovoltaic (PV) systems is influenced not only by module efficiency but also by the flexibility and structural reliability of mounting systems, particularly those allowing height and tilt adjustments to accommodate site-specific and seasonal variations. While automatic tracking systems can increase energy yield, their high cost and mechanical complexity limit widespread adoption, underscoring the need for simpler, more economical alternatives. This study evaluates the structural feasibility of an adjustable-height PV mounting system that improves installation flexibility while maintaining mechanical integrity. A conceptual engineering design approach was employed to develop a modular mounting structure with a mechanical height-adjustment mechanism. Structural performance was assessed using finite element–based static simulations under gravitational loading representative of a commercial bifacial PV module. The evaluation focused on Von Mises stress distribution, total deformation, and safety factor as indicators of mechanical reliability at the conceptual design stage. The results indicate that maximum Von Mises stress remains well below the assumed material yield strength, while total deformation is negligible relative to overall structural dimensions. The calculated safety factor confirms an adequate structural safety margin, indicating that integrating a height adjustment mechanism does not compromise structural stability. The proposed mounting system demonstrates sufficient structural feasibility and mechanical simplicity for early-stage development, offering a practical, adaptable solution for ground-mounted and rooftop PV installations.

Downloads

Download data is not yet available.

References

  1. Garrod, A., and Ghosh, A. (2023, December). A Review of Bifacial Solar Photovoltaic Applications, Frontiers in Energy, Higher Education Press Limited Company, 704–726. doi:10.1007/s11708-023-0903-7.
  2. Maria, D., Rennhofer, M., Mittal, A., Ujvari, G., Zamini, S., Weihs, P., and Dorninger, M. (2025). Bifacial Photovoltaic Module Performance in Correlation to Cloud Conditions , Sun Spectrum and Irradiance Enhancement, Solar Energy, Vol. 285, No. March 2024, 113110. doi:10.1016/j.solener.2024.113110.
  3. Ayadi, O., Rinchi, B., Al-Dahidi, S., Abdalla, M. E. B., and Al-Mahmodi, M. (2024). Techno-Economic Assessment of Bifacial Photovoltaic Systems under Desert Climatic Conditions, Sustainability, Vol. 16, No. 16, 6982. doi:10.3390/su16166982.
  4. Lorenzo, E. (2021, April). On the Historical Origins of Bifacial PV Modelling, Solar Energy, Elsevier Ltd, 587–595. doi:10.1016/j.solener.2021.03.006.
  5. Yakubu, R. O., Mensah, L. D., Quansah, D. A., and Adaramola, M. S. (2024). A Systematic Literature Review of the Bifacial Photovoltaic Module and Its Applications, The Journal of Engineering, Vol. 2024, No. 8, 1–20. doi:10.1049/tje2.12421.
  6. Baumann, T., Nussbaumer, H., Klenk, M., Dreisiebner, A., Carigiet, F., and Baumgartner, F. (2019). Photovoltaic Systems with Vertically Mounted Bifacial PV Modules in Combination with Green Roofs, Solar Energy, Vol. 190, 139–146. doi:10.1016/j.solener.2019.08.014.
  7. Maniscalco, M. P., Longo, S., Miccichè, G., Cellura, M., and Ferraro, M. (2024, January). A Critical Review of the Environmental Performance of Bifacial Photovoltaic Panels, Energies, Multidisciplinary Digital Publishing Institute (MDPI). doi:10.3390/en17010226.
  8. Liang, T. S., Pravettoni, M., Deline, C., Stein, J. S., Kopecek, R., Singh, J. P., Luo, W., Wang, Y., Aberle, A. G., and Khoo, Y. S. (2019, January). A Review of Crystalline Silicon Bifacial Photovoltaic Performance Characterisation and Simulation, Energy and Environmental Science, Royal Society of Chemistry, 116–148. doi:10.1039/c8ee02184h.
  9. Yakubu, R. O., Mensah, L. D., Quansah, D. A., and Adaramola, M. S. (2022). Improving Solar Photovoltaic Installation Energy Yield Using Bifacial Modules and Tracking Systems: An Analytical Approach, Advances in Mechanical Engineering, Vol. 14, No. 12, 168781322211397. doi:10.1177/16878132221139714.
  10. Iturralde Carrera, L. A., Díaz-Tato, L., Constantino-Robles, C. D., Garcia-Barajas, M. G., Zapatero-Gutiérrez, A., Álvarez-Alvarado, J. M., and Rodríguez-Reséndiz, J. (2025). Advances in Mounting Structures for Photovoltaic Systems: Sustainable Materials and Efficient Design, Technologies, Vol. 13, No. 5, 204. doi:10.3390/technologies13050204.
  11. Ramanan, C. J., Hann, K., Candra, J., Roy, S., Jyoti, B., and Jyoti, B. (2024). Design Study on the Parameters Influencing the Performance of Floating Solar PV, Renewable Energy, Vol. 223, No. August 2023, 120064. doi:10.1016/j.renene.2024.120064.
  12. Borea, R. A., Cirimele, V., Lo Franco, F., Maugeri, G., and Melino, F. (2024). Impact of Environmental Variables on Tilt Selection for Energy Yield Maximization in Bifacial Photovoltaic Modules: Modeling Review and Parametric Analysis, Applied Sciences, Vol. 14, No. 24, 11497. doi:10.3390/app142411497.
  13. Yan, H., Liao, T., Hsieh, C., Huang, C., Juang, R., and Kuo, C. J. (2025). Performance Improvement of Vertically Installed Bifacial Solar Panels with Adjustable Reflectors Optimized Using the Taguchi Method, Energy Nexus, Vol. 19, No. December 2024, 100496. doi:10.1016/j.nexus.2025.100496.
  14. Araimi, M. Al, Mandhari, M. Al, and Ghosh, A. (2025). Comparative Analysis of Bifacial and Monofacial FPV System in the UK, Solar Compass, Vol. 13, No. January, 100106. doi:10.1016/j.solcom.2025.100106.
  15. Jamil, U., Vandewetering, N., Sadat, S. A., and Pearce, J. M. (2024). Wood- and Cable-Based Variable Tilt Stilt-Mounted Solar Photovoltaic Racking System, Designs, Vol. 8, No. 1, 6. doi:10.3390/designs8010006.
  16. Gönül, Ö., Duman, A. C., Barutçu, B., and Güler, Ö. (2022). Techno-Economic Analysis of PV Systems with Manually Adjustable Tilt Mechanisms, Engineering Science and Technology, an International Journal, Vol. 35, 101116. doi:10.1016/j.jestch.2022.101116.
  17. Vandewetering, N., Hayibo, K. S., and Pearce, J. M. (2022). Open-Source Design and Economics of Manual Variable-Tilt Angle DIY Wood-Based Solar Photovoltaic Racking System, Designs, Vol. 6, No. 3, 54. doi:10.3390/designs6030054.
  18. Smith, S. E., Viggiano, B., Ali, N., Silverman, T. J., Obligado, M., Calaf, M., and Cal, R. B. (2022). Increased Panel Height Enhances Cooling for Photovoltaic Solar Farms, Applied Energy, Vol. 325, 119819. doi:10.1016/j.apenergy.2022.119819.
  19. Badran, G., and Dhimish, M. (2024). Comprehensive Study on the Efficiency of Vertical Bifacial Photovoltaic Systems : A UK Case Study, Scientific Reports, 1–16. doi:10.1038/s41598-024-68018-1.
  20. Marzouk, O. A. (2022). Tilt Sensitivity for a Scalable One-Hectare Photovoltaic Power Plant Composed of Parallel Racks in Muscat, Cogent Engineering, Vol. 9, No. 1. doi:10.1080/23311916.2022.2029243.
  21. Osma, G., Ordóñez, G., Hernández, E., Quintero, L., and Torres, M. (2016). The Impact of Height Installation on the Performance of PV Panels Integrated into a Green Roof in Tropical Conditions, Energy Quest 2016 (Vol. 205), 147–156. doi:10.2495/EQ160141.
  22. Zhang, W., Gong, T., Ma, S., Zhou, J., and Zhao, Y. (2021). Study on the Influence of Mounting Dimensions of PV Array on Module Temperature in Open-Joint Photovoltaic Ventilated Double-Skin Façades, Sustainability, Vol. 13, No. 9, 5027. doi:10.3390/su13095027.
  23. Tonita, E. M., Russell, A. C. J., Valdivia, C. E., and Hinzer, K. (2023). Optimal Ground Coverage Ratios for Tracked , Fixed-Tilt , and Vertical Photovoltaic Systems for Latitudes up to 75 ◦ N, Solar Energy, Vol. 258, No. March, 8–15. doi:10.1016/j.solener.2023.04.038.
  24. Viriyaroj, B., Jouttijärvi, S., Jänkälä, M., and Miettunen, K. (2024). Performance of Vertically Mounted Bifacial Photovoltaics under the Physical Influence of Low-Rise Residential Environment in High-Latitude Locations, Frontiers in Built Environment, Vol. 10, No. January, 1–12. doi:10.3389/fbuil.2024.1343036.
  25. Kivambe, M., Abdallah, A., Figgis, B., Scabbia, G., Abdelrahim, M., and Lopez-garcia, J. (2024). Assessing Vertical East-West Bifacial Photovoltaic Systems in Desert Environments : Energy Yield and Soiling Mitigation, Solar Energy, Vol. 279, No. April, 112835. doi:10.1016/j.solener.2024.112835.
  26. Chala, G. T., and Al Alshaikh, S. M. (2023). Solar Photovoltaic Energy as a Promising Enhanced Share of Clean Energy Sources in the Future—A Comprehensive Review, Energies, Vol. 16, No. 24, 7919. doi:10.3390/en16247919.
  27. Gautam, S., Das, D. B., and Kumar, A. (2024). Impact of Solar Panel Spacing on Wind Load in an Elevated Solar Panel Structure, Discover Mechanical Engineering. doi:10.1007/s44245-024-00081-4.
  28. Tafti, A. K., Yaghoubi, M., and Ferrantelli, A. (2025). Outdoor Assessment and Modeling of Dust Deposition Impact on Optimal Tilt Angle and Operating Temperature of Photovoltaics, International Journal of Environmental Science and Technology, Vol. 22, No. 15, 16061–16078. doi:10.1007/s13762-025-06723-8.
  29. Abu-zidan, Y., Mendis, P., Gunawardena, T., Mohotti, D., and S. Fernando. (2022). Wind Design of Tall Buildings: The State of the Art, Electronic Journal of Structural Engineering, Vol. 22, No. 01, 53–71. doi:10.56748/ejse.2233101.
  30. Sarfarazi, S., Mascolo, I., Modano, M., and Guarracino, F. (2025). Application of Artificial Intelligence to Support Design and Analysis of Steel Structures, Metals, Vol. 15, No. 4, 408. doi:10.3390/met15040408.
  31. Memon, Q. A., Rahimoon, A. Q., Ali, K., Shaikh, M. F., and Shaikh, S. A. (2021). Determining Optimum Tilt Angle for 1 MW Photovoltaic System at Sukkur, Pakistan, International Journal of Photoenergy, Vol. 2021, 1–8. doi:10.1155/2021/5552637.
  32. Almarshoud, A. F., Abdel-halim, M. A., Almasri, R. A., and Alshwairekh, A. M. (2024). Experimental Study of Bifacial Photovoltaic Module Performance on a Sunny Day with Varying Backgrounds Using Exergy and Energy Analysis, Energies, Vol. 17, No. 21, 5456. doi:10.3390/en17215456.
  33. Dincer, F., and Ozer, E. (2025). Optimization of Rear-Side Energy Contribution in Bifacial PV Panels: A Parametric Analysis on Albedo, Tilt, Height, and Mounting Configuration, Energies, Vol. 18, No. 16, 4443. doi:10.3390/en18164443.
  34. Vasilakopoulou, K., Ulpiani, G., Khan, A., Synnefa, A., and Santamouris, M. (2023). Cool Roofs Boost the Energy Production of Photovoltaics : Investigating the Impact of Roof Albedo on the Energy Performance of Monofacial and Bifacial Photovoltaic Modules, Solar Energy, Vol. 265, No. November, 111948. doi:10.1016/j.solener.2023.111948.
  35. Ernst, M., Liu, X., Asselineau, C., Chen, D., Huang, C., and Lennon, A. (2024). Accurate Modelling of the Bifacial Gain Potential of Rooftop Solar Photovoltaic Systems, Energy Conversion and Management, Vol. 300, No. November 2023, 117947. doi:10.1016/j.enconman.2023.117947.
  36. Tsuchida, S., Tsuno, Y., Sato, D., Oozeki, T., and Yamada, N. (2024). Power Generation Characteristics of Vertical Bifacial Photovoltaic Arrays in Heavy Snow Regions, EPJ Photovoltaics, Vol. 15, 32. doi:10.1051/epjpv/2024029.
  37. González-Moreno, A., Mazzeo, D., Dolara, A., Ogliari, E., and Leva, S. (2024). Outdoor Performance Comparison of Bifacial and Monofacial Photovoltaic Modules in Temperate Climate and Industrial-like Rooftops, Applied Sciences, Vol. 14, No. 13, 5714. doi:10.3390/app14135714.
  38. Khan, P. W., Byun, Y., and Lee, S. (2022). Optimal Photovoltaic Panel Direction and Tilt Angle Prediction Using Stacking Ensemble Learning, Frontiers in Energy Research, Vol. 10, No. April, 1–12. doi:10.3389/fenrg.2022.865413.
  39. Sabu, V., Anand, N., Wegara, G., Marak, K., and Robson, G. (2024). Investigation on Residual Mechanical Properties of Galvanized Iron Cold-Formed Steel Sections Exposed to Elevated Temperatures, No. February. doi:10.56748/ejse.24439.
  40. Faizin, M. I. N., Riyanto, A., Heriyanto, H., Utami, M. B., Ludji, O., and Yandri, E. (2025). From Waste to Resource: Sustainable Recycling Strategies for Monocrystalline Solar Panels in Indonesia, Leuser Journal of Environmental Studies, Vol. 3, No. 2, 99–112. doi:10.60084/ljes.v3i2.340.

Downloads

Published

2026-02-03

How to Cite

Faizin, M. I. N. and Yandri, E. (2026) “Structural Feasibility Assessment of an Adjustable-Height Photovoltaic Mounting System Using Conceptual Design and Finite Element Simulation”, Heca Journal of Applied Sciences, 4(1), pp. 12–19. doi: 10.60084/hjas.v4i1.383.