Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification
DOI:
https://doi.org/10.60084/hjas.v1i2.85Keywords:
Dermatology, Atopic dermatitis, Machine learning, Gradient boosted, Severity scoringAbstract
This study investigates the application of the Gradient Boosting machine learning technique to enhance the classification of Atopic Dermatitis (AD) skin disease images, reducing the potential for manual classification errors. AD, also known as eczema, is a common and chronic inflammatory skin condition characterized by pruritus (itching), erythema (redness), and often lichenification (thickening of the skin). AD affects individuals of all ages and significantly impacts their quality of life. Accurate and efficient diagnostic tools are crucial for the timely management of AD. To address this need, our research encompasses a multi-step approach involving data preprocessing, feature extraction using various color spaces and evaluating classification outcomes through Gradient Boosting. The results demonstrate an accuracy of 93.14%. This study contributes to the field of dermatology by providing a robust and reliable tool to support dermatologists in identifying AD skin disease, facilitating timely intervention and improved patient care.
Downloads
References
- Yew, Y. W., Thyssen, J. P., and Silverberg, J. I. (2019). A systematic review and meta-analysis of the regional and age-related differences in atopic dermatitis clinical characteristics, Journal of the American Academy of Dermatology, Vol. 80, No. 2, 390–401. doi:10.1016/j.jaad.2018.09.035.
- Renert-Yuval, Y., and Guttman-Yassky, E. (2019). What’s New in Atopic Dermatitis, Dermatologic Clinics, Vol. 37, No. 2, 205–213. doi:10.1016/j.det.2018.12.007.
- Oykhman, P., Dookie, J., Al-Rammahy, H., de Benedetto, A., Asiniwasis, R. N., LeBovidge, J., Wang, J., Ong, P. Y., Lio, P., Gutierrez, A., Capozza, K., Martin, S. A., Frazier, W., Wheeler, K., Boguniewicz, M., Spergel, J. M., Greenhawt, M., Silverberg, J. I., Schneider, L., and Chu, D. K. (2022). Dietary Elimination for the Treatment of Atopic Dermatitis: A Systematic Review and Meta-Analysis, The Journal of Allergy and Clinical Immunology: In Practice, Vol. 10, No. 10, 2657-2666.e8. doi:10.1016/j.jaip.2022.06.044.
- Nutten, S. (2015). Atopic Dermatitis: Global Epidemiology and Risk Factors, Annals of Nutrition and Metabolism, Vol. 66, No. 1, 8–16. doi:10.1159/000370220.
- Kolb, L., and Ferrer-Bruker, S. J. (2023). Atopic Dermatitis, StatPearls.
- Soegiarto, G., Abdullah, M. S., Damayanti, L. A., Suseno, A., and Effendi, C. (2019). The prevalence of allergic diseases in school children of metropolitan city in Indonesia shows a similar pattern to that of developed countries, Asia Pacific Allergy, Vol. 9, No. 2, e17. doi:10.5415/apallergy.2019.9.e17.
- Earlia, N., Suhendra, R., Amin, M., Prakoeswa, C. R. S., and Idroes, R. (2019). GC/MS Analysis of Fatty Acids on Pliek U Oil and Its Pharmacological Study by Molecular Docking to Filaggrin as a Drug Candidate in Atopic Dermatitis Treatment, The Scientific World Journal, Vol. 2019.
- Uktamovich, T. S., and Vakhobiddinovich, A. D. (2022). Complex Therapy of Patients with Atopic Dermatitis, Central Asian Journal of Medical and Natural Science, Vol. 3, Nos. 5 SE-Articles.
- Maulana, A., Noviandy, T. R., Sasmita, N. R., Paristiowati, M., Suhendra, R., Yandri, E., Satrio, J., and Idroes, R. (2023). Optimizing University Admissions: A Machine Learning Perspective, Journal of Educational Management and Learning, Vol. 1, No. 1, 1–7. doi:10.60084/jeml.v1i1.46.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Adam, M., Rusyana, A., and Sofyan, H. (2023). Deep Learning-Based Bitcoin Price Forecasting Using Neural Prophet, Ekonomikalia Journal of Economics, Vol. 1, No. 1, 19–25. doi:10.60084/eje.v1i1.51.
- Idroes, G. M., Maulana, A., Suhendra, R., Lala, A., Karma, T., Kusumo, F., Hewindati, Y. T., and Noviandy, T. R. (2023). TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 1–8.
- Idroes, R., Muslem, Mahmudi, Saiful, Idroes, G. M., Suhendra, R., and Irvanizam. (2020). The effect of column and temperature variation on the determination of the dead time in gas chromatographic systems using indirect methods, Heliyon, Vol. 6, No. 2, e03302–e03302. doi:10.1016/j.heliyon.2020.e03302.
- Maulana, A., Noviandy, T. R., Idroes, R., Sasmita, N. R., Suhendra, R., and Irvanizam, I. (2020). Prediction of Kovats Retention Indices for Fragrance and Flavor using Artificial Neural Network, 2020 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 1–5. doi:10.1109/ICELTICs50595.2020.9315391.
- Agustia, M., Noviandy, T. R., Maulana, A., Suhendra, R., Muslem, M., Sasmita, N. R., Idroes, G. M., Rahimah, S., Afidh, R. P. F., Subianto, M., Irvanizam, I., and Idroes, R. (2022). Application of Fuzzy Support Vector Regression to Predict the Kovats Retention Indices of Flavors and Fragrances, 2022 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 13–18. doi:10.1109/ICELTICs56128.2022.9932124.
- Idroes, R., Noviandy, T., Maulana, A., Suhendra, R., Sasmita, N., Muslem, M., Idroes, G. M., Kemala, P., and Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index, International Review on Modelling and Simulations (IREMOS), Vol. 14, No. 2, 137.
- Suhendra, R., Juliwardi, I., and Sanusi, S. (2022). Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Support Vector Machine, Jurnal Teknologi Informasi, Vol. 1, No. 1, 29–35.
- Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12.
- Gustafson, E., Pacheco, J., Wehbe, F., Silverberg, J., and Thompson, W. (2017). A Machine Learning Algorithm for Identifying Atopic Dermatitis in Adults from Electronic Health Records, 2017 IEEE International Conference on Healthcare Informatics (ICHI), IEEE, 83–90. doi:10.1109/ICHI.2017.31.
- Suhendra, R., Arnia, F., Idroes, R., Earlia, N., and Suhartono, E. (2019). A Novel Approach to Multi-class Atopic Dermatitis Disease Severity Scoring using Multi-class SVM, 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), IEEE, 35–39. doi:10.1109/CYBERNETICSCOM.2019.8875693.
- Maulana, A., Noviandy, T. R., Suhendra, R., Earlia, N., Sofyan, H., Subianto, M., and Idroes, R. (2023). Performance Analysis and Feature Extraction for Classifying the Severity of Atopic Dermatitis Diseases, 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), 226–231. doi:10.1109/COSITE60233.2023.10249760.
- Wu, H., Yin, H., Chen, H., Sun, M., Liu, X., Yu, Y., Tang, Y., Long, H., Zhang, B., Zhang, J., Zhou, Y., Li, Y., Zhang, G., Zhang, P., Zhan, Y., Liao, J., Luo, S., Xiao, R., Su, Y., Zhao, J., Wang, F., Zhang, J., Zhang, W., Zhang, J., and Lu, Q. (2020). A deep learning, image based approach for automated diagnosis for inflammatory skin diseases, Annals of Translational Medicine, Vol. 8, No. 9, 581–581. doi:10.21037/atm.2020.04.39.
- Guimarães, P., Batista, A., Zieger, M., Kaatz, M., and Koenig, K. (2020). Artificial Intelligence in Multiphoton Tomography: Atopic Dermatitis Diagnosis, Scientific Reports, Vol. 10, No. 1, 7968. doi:10.1038/s41598-020-64937-x.
- Earlia, N., Umborowati, M. A., Tasrif, A. Y., Pradistha, A., Liana, M. R., and Bulqiah, M. (2023). An Intriguing Case of Erythroderma Possibly Related to Psoriasis Vulgaris, Indonesian Journal of Case Reports, Vol. 1, No. 1, 1–4. doi:10.60084/ijcr.v1i1.56.
- Dash, M., Londhe, N. D., Ghosh, S., Semwal, A., and Sonawane, R. S. (2019). PsLSNet: Automated psoriasis skin lesion segmentation using modified U-Net-based fully convolutional network, Biomedical Signal Processing and Control, Vol. 52, 226–237. doi:10.1016/j.bspc.2019.04.002.
- Pal, A., Chaturvedi, A., Garain, U., Chandra, A., and Chatterjee, R. (2016). Severity grading of psoriatic plaques using deep CNN based multi-task learning, 2016 23rd International Conference on Pattern Recognition (ICPR), IEEE, 1478–1483. doi:10.1109/ICPR.2016.7899846.
- Dash, M., Londhe, N. D., Ghosh, S., Raj, R., and Sonawane, R. S. (2020). A cascaded deep convolution neural network based CADx system for psoriasis lesion segmentation and severity assessment, Applied Soft Computing, Vol. 91, 106240. doi:10.1016/j.asoc.2020.106240.
- Ford, A., and Roberts, A. (1998). Colour space conversions, Westminster University, London, Vol. 1998, 1–31.
- Saravanan, G., Yamuna, G., and Nandhini, S. (2016). Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models, 2016 International Conference on Communication and Signal Processing (ICCSP), IEEE, 462–466.
- Van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., Boulogne, F., Warner, J. D., Yager, N., Gouillart, E., and Yu, T. (2014). scikit-image: image processing in Python, PeerJ, Vol. 2, e453.
- Bartlett, P., Freund, Y., Lee, W. S., and Schapire, R. E. (1998). Boosting the margin: A new explanation for the effectiveness of voting methods, The Annals of Statistics, Vol. 26, No. 5, 1651–1686.
- Caruana, R., and Niculescu-Mizil, A. (2006). An empirical comparison of supervised learning algorithms, Proceedings of the 23rd International Conference on Machine Learning, 161–168.
- Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine., The Annals of Statistics, Vol. 29, No. 5. doi:10.1214/aos/1013203451.
- Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concepts and Techniques, Data Mining: Concepts and Techniques. doi:10.1016/C2009-0-61819-5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Rivansyah Suhendra, Suryadi Suryadi, Noviana Husdayanti, Aga Maulana, Teuku Rizky Noviandy, Novi Reandy Sasmita, Muhammad Subianto, Nanda Earlia, Nurdjannah Jane Niode, Rinaldi Idroes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.