Credit Card Fraud Detection Through Explainable Artificial Intelligence for Managerial Oversight
DOI:
https://doi.org/10.60084/ijma.v3i1.301Keywords:
Transparency, Accountability, Compliance, Interpretability, Decision supportAbstract
As digital payment systems grow in volume and complexity, credit card fraud continues to be a significant threat to financial institutions. While machine learning (ML) has emerged as a powerful tool for detecting fraudulent activity, its adoption in managerial settings is hindered by a lack of transparency and interpretability. This study examines how explainable artificial intelligence (XAI) can enhance managerial oversight in the deployment of ML based fraud detection systems. Using a publicly available, simulated dataset of credit card transactions, we developed and evaluated four ML models: Logistic Regression, Naïve Bayes, Decision Tree, and Random Forest. Performance was assessed using standard metrics, including accuracy, precision, recall, and F1-score. The Random Forest model demonstrated superior classification performance but also presented significant interpretability challenges due to its complexity. To fill this gap, we applied SHAP (SHapley Additive exPlanations), a leading method for explaining the outputs of the Random Forest model. SHAP analysis revealed that transaction amount and merchant category were the most influential features in determining the risk of fraud. SHAP plots were used to make these insights accessible to non-technical stakeholders. The findings underscore the importance of XAI in promoting transparency, facilitating regulatory compliance, and fostering trust in AI-driven decisions. This study offers practical guidance for managers, auditors, and policymakers seeking to integrate explainable ML tools into financial risk management processes, ensuring that technological advancements are balanced with accountability and informed human oversight.
Downloads
References
- Fedotova, G. V., Chugumbaev, R. R., Chugumbaeva, N. N., Sukhinin, A. V., and Kuzmina, E. V. (2019). Increase of Economic Security of Internet Systems of Credit Organizations, 922–931. doi:10.1007/978-3-030-00102-5_98.
- Karpoff, J. M. (2021). The Future of Financial Fraud, Journal of Corporate Finance, Vol. 66, 101694. doi:10.1016/j.jcorpfin.2020.101694.
- Laxman, V., Ramesh, N., Jaya Prakash, S. K., and Aluvala, R. (2024). Emerging Threats in Digital Payment and Financial Crime: A Bibliometric Review, Journal of Digital Economy, Vol. 3, 205–222. doi:10.1016/j.jdec.2025.04.002.
- Hafez, I. Y., Hafez, A. Y., Saleh, A., Abd El-Mageed, A. A., and Abohany, A. A. (2025). A Systematic Review of AI-Enhanced Techniques in Credit Card Fraud Detection, Journal of Big Data, Vol. 12, No. 1, 6. doi:10.1186/s40537-024-01048-8.
- Beju, D.-G., and Făt, C.-M. (2023). Frauds in Banking System: Frauds with Cards and Their Associated Services, 31–52. doi:10.1007/978-3-031-34082-6_2.
- Hardi, I., Idroes, G. M., Márquez-Ramos, L., Noviandy, T. R., and Idroes, R. (2025). Inclusive Innovation and Green Growth in Advanced Economies, Sustainable Futures, Vol. 9, 100540. doi:10.1016/j.sftr.2025.100540.
- Hardi, I., Afjal, M., Khan, M., Idroes, G. M., Noviandy, T. R., and Utami, R. T. (2024). Economic Freedom and Growth Dynamics in Indonesia: An Empirical Analysis of Indicators Driving Sustainable Development, Cogent Economics & Finance, Vol. 12, No. 1. doi:10.1080/23322039.2024.2433023.
- Hasham, S., Joshi, S., and Mikkelsen, D. (2019). Financial Crime and Fraud in the Age of Cybersecurity, McKinsey & Company, Vol. 2019.
- Hardi, I., Ray, S., Duwal, N., Idroes, G. M., and Mardayanti, U. (2024). Consumer Confidence and Economic Indicators: A Macro Perspective, Indatu Journal of Management and Accounting, Vol. 2, No. 2, 81–95. doi:10.60084/ijma.v2i2.241.
- Idroes, G. M., Maulidar, P., Marsellindo, R., Afjal, M., and Hardi, I. (2024). The Impact of Credit Access on Economic Growth in SEA Countries, Indatu Journal of Management and Accounting, Vol. 2, No. 2, 96–104. doi:10.60084/ijma.v2i2.256.
- Hardi, I., Nghiem, X.-H., Suwal, S., Ringga, E. S., Marsellindo, R., and Idroes, G. M. (2024). Starting a Business: A Focus on Construction Permits, Electricity Access, and Property Registration, Indatu Journal of Management and Accounting, Vol. 2, No. 2, 105–117. doi:10.60084/ijma.v2i2.245.
- Hardi, I., Idroes, G. M., Hamaguchi, Y., Can, M., Noviandy, T. R., and Idroes, R. (2025). Business Confidence in the Shift to Renewable Energy: A Country-Specific Assessment in Major Asian Economies, Journal of Economy and Technology, Vol. 3, 44–68. doi:10.1016/j.ject.2024.08.002.
- Vashishth, T. K., Chaudhary, A., Sharma, V., Chaudhary, S., Sharma, N., Sharma, R., Kaushik, V., and Sharma, S. (2025). Adaptive AI Systems for Financial Fraud Detection and Risk Management, 431–454. doi:10.4018/979-8-3373-1200-2.ch021.
- Khanum, A., K S, C., Singh, B., and Gomathi, C. (2024). Fraud Detection in Financial Transactions: A Machine Learning Approach vs. Rule-Based Systems, 2024 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), IEEE, 1–5. doi:10.1109/IITCEE59897.2024.10467759.
- Hassija, V., Chamola, V., Mahapatra, A., Singal, A., Goel, D., Huang, K., Scardapane, S., Spinelli, I., Mahmud, M., and Hussain, A. (2024). Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence, Cognitive Computation, Vol. 16, No. 1, 45–74. doi:10.1007/s12559-023-10179-8.
- Dwivedi, R., Dave, D., Naik, H., Singhal, S., Omer, R., Patel, P., Qian, B., Wen, Z., Shah, T., Morgan, G., and Ranjan, R. (2023). Explainable AI (XAI): Core Ideas, Techniques, and Solutions, ACM Computing Surveys, Vol. 55, No. 9, 1–33. doi:10.1145/3561048.
- Awosika, T., Shukla, R. M., and Pranggono, B. (2024). Transparency and Privacy: The Role of Explainable AI and Federated Learning in Financial Fraud Detection, IEEE Access, Vol. 12, 64551–64560. doi:10.1109/ACCESS.2024.3394528.
- Ponzoni, I., Páez Prosper, J. A., and Campillo, N. E. (2023). Explainable Artificial Intelligence: A Taxonomy and Guidelines for Its Application to Drug Discovery, WIREs Computational Molecular Science, Vol. 13, No. 6. doi:10.1002/wcms.1681.
- Lundberg, S. M., and Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions, Advances in Neural Information Processing Systems, Vol. 30.
- Noviandy, T. R., Idroes, G. M., Hardi, I., Afjal, M., and Ray, S. (2024). A Model-Agnostic Interpretability Approach to Predicting Customer Churn in the Telecommunications Industry, Infolitika Journal of Data Science, Vol. 2, No. 1, 34–44. doi:10.60084/ijds.v2i1.199.
- Idroes, G. M., Noviandy, T. R., Idroes, G. M., Hardi, I., Duta, T. F., Hamoud, L. M., and Al-Gunaid, H. T. (2024). Prognostication of Differentiated Thyroid Cancer Recurrence: An Explainable Machine Learning Approach, Narra X, Vol. 2, No. 3, e183. doi:10.52225/narrax.v2i3.183.
- Noviandy, T. R., Nisa, K., Idroes, G. M., Hardi, I., and Sasmita, N. R. (2024). Classifying Beta-Secretase 1 Inhibitor Activity for Alzheimer’s Drug Discovery with LightGBM, Journal of Computing Theories and Applications, Vol. 1, No. 4, 358–367. doi:10.62411/jcta.10129.
- Khalid, A. R., Owoh, N., Uthmani, O., Ashawa, M., Osamor, J., and Adejoh, J. (2024). Enhancing Credit Card Fraud Detection: An Ensemble Machine Learning Approach, Big Data and Cognitive Computing, Vol. 8, No. 1, 6. doi:10.3390/bdcc8010006.
- Feng, X., and Kim, S.-K. (2024). Novel Machine Learning Based Credit Card Fraud Detection Systems, Mathematics, Vol. 12, No. 12, 1869. doi:10.3390/math12121869.
- Noviandy, T. R., Hardi, I., and Idroes, G. M. (2024). Forecasting Bank Stock Trends Using Artificial Intelligence: A Deep Dive into the Neural Prophet Approach, The International Journal of Financial Systems, Vol. 2, No. 1, 29–56. doi:10.61459/ijfs.v2i1.41.
- Shenoy, K. (2020). Credit Card Transactions Fraud Detection Dataset, Kaggle.
- Srikanth Yadav., M., and Kalpana., R. (2019). Data Preprocessing for Intrusion Detection System Using Encoding and Normalization Approaches, 2019 11th International Conference on Advanced Computing (ICoAC), IEEE, 265–269. doi:10.1109/ICoAC48765.2019.246851.
- Noviandy, T. R., Idroes, G. M., Maulana, A., Hardi, I., Ringga, E. S., and Idroes, R. (2023). Credit Card Fraud Detection for Contemporary Financial Management Using XGBoost-Driven Machine Learning and Data Augmentation Techniques, Indatu Journal of Management and Accounting, Vol. 1, No. 1, 29–35. doi:10.60084/ijma.v1i1.78.
- Chawla, N. V, Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). SMOTE: Synthetic Minority Over-Sampling Technique, Journal of Artificial Intelligence Research, Vol. 16, 321–357.
- Joseph, V. R. (2022). Optimal Ratio for Data Splitting, Statistical Analysis and Data Mining: The ASA Data Science Journal, Vol. 15, No. 4, 531–538. doi:10.1002/sam.11583.
- Matuszelański, K., and Kopczewska, K. (2022). Customer Churn in Retail E-Commerce Business: Spatial and Machine Learning Approach, Journal of Theoretical and Applied Electronic Commerce Research, Vol. 17, No. 1, 165–198. doi:10.3390/jtaer17010009.
- Chen, H., Hu, S., Hua, R., and Zhao, X. (2021). Improved Naive Bayes Classification Algorithm for Traffic Risk Management, EURASIP Journal on Advances in Signal Processing, Vol. 2021, No. 1, 30. doi:10.1186/s13634-021-00742-6.
- Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Enhancing Loan Approval Decision-Making: An Interpretable Machine Learning Approach Using LightGBM for Digital Economy Development, Malaysian Journal of Computing (MJOC), Vol. 9, No. 1, 1734–1745. doi:10.24191/mjoc.v9i1.25691.
- Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Afidh, R. P. F., and Idroes, R. (2024). An Explainable Multi-Model Stacked Classifier Approach for Predicting Hepatitis C Drug Candidates, Sci, Vol. 6, No. 4, 81. doi:10.3390/sci6040081.
- Tharwat, A. (2021). Classification Assessment Methods, Applied Computing and Informatics, Vol. 17, No. 1, 168–192. doi:10.1016/j.aci.2018.08.003.
- Noviandy, T. R., Idroes, G. M., and Hardi, I. (2025). Integrating Explainable Artificial Intelligence and Light Gradient Boosting Machine for Glioma Grading, Informatics and Health, Vol. 2, No. 1, 1–8. doi:10.1016/j.infoh.2024.12.001.
- Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). An Interpretable Machine Learning Strategy for Antimalarial Drug Discovery with LightGBM and SHAP, Journal of Future Artificial Intelligence and Technologies, Vol. 1, No. 2, 84–95. doi:10.62411/faith.2024-16.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Maulydia, N. B., Patwekar, M., Suhendra, R., and Idroes, R. (2023). Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’s Disease Drug Discovery, Malacca Pharmaceutics, Vol. 1, No. 2, 48–54. doi:10.60084/mp.v1i2.60.
- Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Machine Learning Approach to Predict AXL Kinase Inhibitor Activity for Cancer Drug Discovery Using XGBoost and Bayesian Optimization, Journal of Soft Computing and Data Mining, Vol. 5, No. 1, 46–56.
- Gramegna, A., and Giudici, P. (2021). SHAP and LIME: An Evaluation of Discriminative Power in Credit Risk, Frontiers in Artificial Intelligence, Vol. 4. doi:10.3389/frai.2021.752558.
- Noviandy, T. R., Maulana, A., Irvanizam, I., Idroes, G. M., Maulydia, N. B., Tallei, T. E., Subianto, M., and Idroes, R. (2025). Interpretable Machine Learning Approach to Predict Hepatitis C Virus NS5B Inhibitor Activity Using Voting-Based LightGBM and SHAP, Intelligent Systems with Applications, Vol. 25, 200481. doi:10.1016/j.iswa.2025.200481.
- Le, T.-T.-H., Kim, H., Kang, H., and Kim, H. (2022). Classification and Explanation for Intrusion Detection System Based on Ensemble Trees and SHAP Method, Sensors, Vol. 22, No. 3, 1154. doi:10.3390/s22031154.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Muksalmina Muksalmina, Ahmad Syahyana, Ferdy Hidayatullah, Ghalieb Mutig Idroes, Teuku Rizky Noviandy

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.