An Explainable Machine Learning Study of Behavioral and Psychological Determinants of Depression in the Academic Environment
DOI:
https://doi.org/10.60084/jeml.v3i1.304Keywords:
Depression, Machine learning, Academic stress, Explainable AI, Student mental healthAbstract
Depression is a significant and growing concern within academic environments, affecting both students and staff due to factors such as academic pressure, financial stress, and lifestyle challenges. This study explores the use of machine learning, specifically a Random Forest classifier, to predict depression risk among students using behavioral, psychological, and demographic data. A dataset of 27,788 student records was analyzed after thorough preprocessing and exploratory data analysis. The model achieved strong performance, with an accuracy of 83.52% and an AUC of 0.91, indicating reliable classification of depression status. Local Interpretable Model-agnostic Explanations (LIME) were employed to enhance interpretability, revealing key predictive features such as suicidal ideation, academic pressure, sleep duration, and dietary habits. These interpretable insights align with existing psychological research and provide actionable information for mental health professionals. The findings highlight the value of explainable AI in educational settings, offering a scalable and transparent approach to early depression detection and intervention. Future work should focus on longitudinal data integration, multimodal inputs, and real-world implementation to strengthen the model’s utility and impact.
Downloads
References
- Deng, Y., Cherian, J., Khan, N. U. N., Kumari, K., Sial, M. S., Comite, U., Gavurova, B., and Popp, J. (2022). Family and Academic Stress and Their Impact on Students’ Depression Level and Academic Performance, Frontiers in Psychiatry, Vol. 13. doi:10.3389/fpsyt.2022.869337.
- Chemagosi, M. J. (2024). Student Well-Being in Higher Education Institutions, 81–106. doi:10.4018/979-8-3693-4417-0.ch004.
- Brott, K. H., and Veilleux, J. C. (2024). Examining State Self‐criticism and Self‐efficacy as Factors Underlying Hopelessness and Suicidal Ideation, Suicide and Life-Threatening Behavior, Vol. 54, No. 2, 207–220. doi:10.1111/sltb.13034.
- Gbessemehlan, A., Rafiou Taffa, R., Galera, C., Guerchet, M., and Adoukonou, T. (2024). Prevalence and Correlates of Depressive Symptoms among Undergraduate Health Science Students at the University of Parakou, Benin, Journal of Epidemiology and Population Health, Vol. 72, No. 4, 202525. doi:10.1016/j.jeph.2024.202525.
- Jareebi, M. A., and Alqassim, A. Y. (2024). The Impact of Educational Attainment on Mental Health: A Causal Assessment from the UKB and FinnGen Cohorts, Medicine, Vol. 103, No. 26, e38602. doi:10.1097/MD.0000000000038602.
- Soni, N., Jaiswal, S., Kumar, S., Malik, S., and Rani, S. (2024). The Association between Depression, Daytime Sleepiness, Chronotype and Fatigue among the Students, Asian Journal of Medicine and Health, Vol. 22, No. 7, 204–213. doi:10.9734/ajmah/2024/v22i71061.
- Remes, O., Mendes, J. F., and Templeton, P. (2021). Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature, Brain Sciences, Vol. 11, No. 12, 1633. doi:10.3390/brainsci11121633.
- Vergeron, L., Morvan, Y., Hadouiri, N., Haas-Jordache, A., Gouy, E., Mathieu, L., Goulard, A., Rolland, F., and Frajerman, A. (2024). Use of Service and Treatment Adequacy in Medical Students and Residents Suffering from Depression in France: A Nationwide Study, Psychiatry Research, Vol. 339, 115975. doi:10.1016/j.psychres.2024.115975.
- Jiang, C., Lin, B., Ye, X., Yu, Y., Xu, P., Peng, C., Mou, T., Yu, X., Zhao, H., Zhao, M., Li, Y., Zhang, S., Chen, X., Pan, F., Shang, D., Jin, K., Lu, J., Chen, J., Yin, J., and Huang, M. (2024). Graph Convolutional Network with Attention Mechanism Improve Major Depressive Depression Diagnosis Based on Plasma Biomarkers and Neuroimaging Data, Journal of Affective Disorders, Vol. 360, 336–344. doi:10.1016/j.jad.2024.05.136.
- Philip Thekkekara, J., Yongchareon, S., and Liesaputra, V. (2024). An Attention-Based CNN-BiLSTM Model for Depression Detection on Social Media Text, Expert Systems with Applications, Vol. 249, 123834. doi:10.1016/j.eswa.2024.123834.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Afidh, R. P. F., and Idroes, R. (2024). An Explainable Multi-Model Stacked Classifier Approach for Predicting Hepatitis C Drug Candidates, Sci, Vol. 6, No. 4, 81. doi:10.3390/sci6040081.
- Park, Y., Park, S., and Lee, M. (2024). Effectiveness of Artificial Intelligence in Detecting and Managing Depressive Disorders: Systematic Review, Journal of Affective Disorders, Vol. 361, 445–456. doi:10.1016/j.jad.2024.06.035.
- Huang, G., Li, Y., Jameel, S., Long, Y., and Papanastasiou, G. (2024). From Explainable to Interpretable Deep Learning for Natural Language Processing in Healthcare: How Far from Reality?, Computational and Structural Biotechnology Journal, Vol. 24, 362–373. doi:10.1016/j.csbj.2024.05.004.
- Cai, W., Zhu, X., Bai, K., Ye, A., and Zhang, R. (2024). An Explainable Dual-Mode Convolutional Neural Network for Multivariate Time Series Classification, Knowledge-Based Systems, Vol. 299, 112015. doi:10.1016/j.knosys.2024.112015.
- Shamim, A. (2025). Student Depression Dataset, Kaggle, from https://www.kaggle.com/datasets/adilshamim8/student-depression-dataset.
- Amato, A., and Di Lecce, V. (2023). Data Preprocessing Impact on Machine Learning Algorithm Performance, Open Computer Science, Vol. 13, No. 1. doi:10.1515/comp-2022-0278.
- Noviandy, T. R., Maulana, A., Irvanizam, I., Idroes, G. M., Maulydia, N. B., Tallei, T. E., Subianto, M., and Idroes, R. (2025). Interpretable Machine Learning Approach to Predict Hepatitis C Virus NS5B Inhibitor Activity Using Voting-Based LightGBM and SHAP, Intelligent Systems with Applications, Vol. 25, 200481. doi:10.1016/j.iswa.2025.200481.
- Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Enhancing Loan Approval Decision-Making: An Interpretable Machine Learning Approach Using LightGBM for Digital Economy Development, Malaysian Journal of Computing (MJOC), Vol. 9, No. 1, 1734–1745. doi:10.24191/mjoc.v9i1.25691.
- Noviandy, T. R., Idroes, G. M., Mohd Fauzi, F., and Idroes, R. (2024). Application of Ensemble Machine Learning Methods for QSAR Classification of Leukotriene A4 Hydrolase Inhibitors in Drug Discovery, Malacca Pharmaceutics, Vol. 2, No. 2, 68–78. doi:10.60084/mp.v2i2.217.
- Wu, Z., Zhu, M., Kang, Y., Leung, E. L.-H., Lei, T., Shen, C., Jiang, D., Wang, Z., Cao, D., and Hou, T. (2021). Do We Need Different Machine Learning Algorithms for QSAR Modeling? A Comprehensive Assessment of 16 Machine Learning Algorithms on 14 QSAR Data Sets, Briefings in Bioinformatics, Vol. 22, No. 4, bbaa321. doi:10.1093/bib/bbaa321.
- Noviandy, T. R., Idroes, G. M., Hardi, I., Afjal, M., and Ray, S. (2024). A Model-Agnostic Interpretability Approach to Predicting Customer Churn in the Telecommunications Industry, Infolitika Journal of Data Science, Vol. 2, No. 1, 34–44. doi:10.60084/ijds.v2i1.199.
- Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-Learn: Machine Learning in Python, The Journal of Machine Learning Research, Vol. 12, 2825–2830.
- Roy, K., and Kar, S. (2015). How to Judge Predictive Quality of Classification and Regression Based QSAR Models?, Z. Ul-Haq; J. D. B. T.-F. in C. C. Madura (Eds.), Bentham Science Publishers, 71–120. doi:10.1016/B978-1-60805-979-9.50003-2.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Maulydia, N. B., Patwekar, M., Suhendra, R., and Idroes, R. (2023). Integrating Genetic Algorithm and LightGBM for QSAR Modeling of Acetylcholinesterase Inhibitors in Alzheimer’s Disease Drug Discovery, Malacca Pharmaceutics, Vol. 1, No. 2, 48–54. doi:10.60084/mp.v1i2.60.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Irvanizam, I., Subianto, M., and Idroes, R. (2023). QSAR-Based Stacked Ensemble Classifier for Hepatitis C NS5B Inhibitor Prediction, 2023 2nd International Conference on Computer System, Information Technology, and Electrical Engineering (COSITE), IEEE, 220–225. doi:10.1109/COSITE60233.2023.10250039.
- Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ‘Why Should I Trust You?’: Explaining the Predictions of Any Classifier, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 1135–1144. doi:10.1145/2939672.2939778.
- Zhou, T., Cheng, G., Wu, X., Li, R., Li, C., Tian, G., He, S., and Yan, Y. (2021). The Associations between Sleep Duration, Academic Pressure, and Depressive Symptoms among Chinese Adolescents: Results from China Family Panel Studies, International Journal of Environmental Research and Public Health, Vol. 18, No. 11, 6134. doi:10.3390/ijerph18116134.
- Cao, Y., Yang, Z., Yu, Y., and Huang, X. (2022). Physical Activity, Sleep Quality and Life Satisfaction in Adolescents: A Cross-Sectional Survey Study, Frontiers in Public Health, Vol. 10. doi:10.3389/fpubh.2022.1010194.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Teuku Rizky Noviandy, Ghalieb Mutig Idroes, Irsan Hardi, Edi Saputra Ringga, Rinaldi Idroes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.