Techniques and Tools in Learning Analytics and Educational Data Mining: A Review
DOI:
https://doi.org/10.60084/jeml.v3i1.308Keywords:
Predictive modeling, Student engagement, Personalized learning, Dropout prediction, Curriculum analyticsAbstract
Learning analytics and educational data mining are rapidly evolving fields that leverage data-driven methods to enhance teaching, learning, and institutional decision-making. This review provides a comprehensive overview of the key analytical techniques and tools employed in learning analytics and educational data mining, including classification, clustering, regression, association rule mining, and data visualization. It also highlights the integration of advanced methods such as deep learning and adaptive systems for personalized education. The paper examines various platforms and technologies, including learning management systems, open-source tools, and AI/ML libraries, to evaluate their capabilities, scalability, and practical adoption. Key application areas, such as dropout prediction, engagement analysis, personalized learning, and curriculum design, are examined through selected case studies spanning K–12 and higher education. The review emphasizes the growing importance of ethical considerations, interpretability, and usability in the application of educational analytics. By synthesizing current practices and trends, this work aims to inform educators, researchers, and developers seeking to harness educational data for improved learning outcomes and strategic planning.
Downloads
References
- Baek, C., and Doleck, T. (2023). Educational Data Mining versus Learning Analytics: A Review of Publications From 2015 to 2019, Interactive Learning Environments, Vol. 31, No. 6, 3828–3850. doi:10.1080/10494820.2021.1943689.
- Rabelo, A., Rodrigues, M. W., Nobre, C., Isotani, S., and Zárate, L. (2024). Educational Data Mining and Learning Analytics: A Review of Educational Management in e-Learning, Information Discovery and Delivery, Vol. 52, No. 2, 149–163. doi:10.1108/IDD-10-2022-0099.
- Romero, C., and Ventura, S. (2020). Educational Data Mining and Learning Analytics: An Updated Survey, WIREs Data Mining and Knowledge Discovery, Vol. 10, No. 3. doi:10.1002/widm.1355.
- Kew, S. N., and Tasir, Z. (2022). Learning Analytics in Online Learning Environment: A Systematic Review on the Focuses and the Types of Student-Related Analytics Data, Technology, Knowledge and Learning, Vol. 27, No. 2, 405–427. doi:10.1007/s10758-021-09541-2.
- Ifenthaler, D., Gibson, D., Prasse, D., Shimada, A., and Yamada, M. (2021). Putting Learning Back into Learning Analytics: Actions for Policy Makers, Researchers, and Practitioners, Educational Technology Research and Development, Vol. 69, No. 4, 2131–2150. doi:10.1007/s11423-020-09909-8.
- Gray, G., Schalk, A. E., Cooke, G., Murnion, P., Rooney, P., and O’Rourke, K. C. (2022). Stakeholders’ Insights on Learning Analytics: Perspectives of Students and Staff, Computers & Education, Vol. 187, 104550. doi:10.1016/j.compedu.2022.104550.
- Shu, X., and Ye, Y. (2023). Knowledge Discovery: Methods from Data Mining and Machine Learning, Social Science Research, Vol. 110, 102817. doi:10.1016/j.ssresearch.2022.102817.
- Alam, A. (2023). Improving Learning Outcomes through Predictive Analytics: Enhancing Teaching and Learning with Educational Data Mining, 2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 249–257. doi:10.1109/ICICCS56967.2023.10142392.
- Okewu, E., Adewole, P., Misra, S., Maskeliunas, R., and Damasevicius, R. (2021). Artificial Neural Networks for Educational Data Mining in Higher Education: A Systematic Literature Review, Applied Artificial Intelligence, Vol. 35, No. 13, 983–1021. doi:10.1080/08839514.2021.1922847.
- Idroes, R., Subianto, M., Zahriah, Z., Afidh, R. P. F., Irvanizam, I., Noviandy, T. R., Sugara, D. R., Mursyida, W., Zhilalmuhana, T., and Idroes, G. M. (2023). Digital Transformations in Vocational High School: A Case Study of Management Information System Implementation in Banda Aceh, Indonesia, Journal of Educational Management and Learning, Vol. 1, No. 2, 48–54. doi:10.60084/jeml.v1i2.128.
- Lin, L., Zhou, D., Wang, J., and Wang, Y. (2024). A Systematic Review of Big Data Driven Education Evaluation, Sage Open, Vol. 14, No. 2. doi:10.1177/21582440241242180.
- Gao, P., Li, J., and Liu, S. (2021). An Introduction to Key Technology in Artificial Intelligence and Big Data Driven E-Learning and e-Education, Mobile Networks and Applications, Vol. 26, No. 5, 2123–2126. doi:10.1007/s11036-021-01777-7.
- Alturki, U., and Aldraiweesh, A. (2021). Application of Learning Management System (LMS) during the COVID-19 Pandemic: A Sustainable Acceptance Model of the Expansion Technology Approach, Sustainability, Vol. 13, No. 19, 10991. doi:10.3390/su131910991.
- Lin, C.-C., Huang, A. Y. Q., and Lu, O. H. T. (2023). Artificial Intelligence in Intelligent Tutoring Systems toward Sustainable Education: A Systematic Review, Smart Learning Environments, Vol. 10, No. 1, 41. doi:10.1186/s40561-023-00260-y.
- Stracke, C. M., and Trisolini, G. (2021). A Systematic Literature Review on the Quality of MOOCs, Sustainability, Vol. 13, No. 11, 5817. doi:10.3390/su13115817.
- Arizmendi, C. J., Bernacki, M. L., Raković, M., Plumley, R. D., Urban, C. J., Panter, A. T., Greene, J. A., and Gates, K. M. (2022). Predicting Student Outcomes Using Digital Logs of Learning Behaviors: Review, Current Standards, and Suggestions for Future Work, Behavior Research Methods, Vol. 55, No. 6, 3026–3054. doi:10.3758/s13428-022-01939-9.
- Dwivedi, D. N., Mahanty, G., and Dwivedi, V. nath. (2024). The Role of Predictive Analytics in Personalizing Education, 44–59. doi:10.4018/979-8-3693-2169-0.ch003.
- Taye, M. M. (2023). Understanding of Machine Learning with Deep Learning: Architectures, Workflow, Applications and Future Directions, Computers, Vol. 12, No. 5, 91. doi:10.3390/computers12050091.
- Guleria, P., and Sood, M. (2023). Explainable AI and Machine Learning: Performance Evaluation and Explainability of Classifiers on Educational Data Mining Inspired Career Counseling, Education and Information Technologies, Vol. 28, No. 1, 1081–1116. doi:10.1007/s10639-022-11221-2.
- Shaik, T., Tao, X., Li, Y., Dann, C., McDonald, J., Redmond, P., and Galligan, L. (2022). A Review of the Trends and Challenges in Adopting Natural Language Processing Methods for Education Feedback Analysis, IEEE Access, Vol. 10, 56720–56739. doi:10.1109/ACCESS.2022.3177752.
- Alqahtani, T., Badreldin, H. A., Alrashed, M., Alshaya, A. I., Alghamdi, S. S., bin Saleh, K., Alowais, S. A., Alshaya, O. A., Rahman, I., Al Yami, M. S., and Albekairy, A. M. (2023). The Emergent Role of Artificial Intelligence, Natural Learning Processing, and Large Language Models in Higher Education and Research, Research in Social and Administrative Pharmacy, Vol. 19, No. 8, 1236–1242. doi:10.1016/j.sapharm.2023.05.016.
- Wulff, P. (2023). Network Analysis of Terms in the Natural Sciences Insights from Wikipedia through Natural Language Processing and Network Analysis, Education and Information Technologies, Vol. 28, No. 11, 14325–14346. doi:10.1007/s10639-022-11531-5.
- Mienye, I. D., and Jere, N. (2024). A Survey of Decision Trees: Concepts, Algorithms, and Applications, IEEE Access, Vol. 12, 86716–86727. doi:10.1109/ACCESS.2024.3416838.
- Li, H. (2024). Support Vector Machine, Machine Learning Methods, Springer Nature Singapore, Singapore, 127–177. doi:10.1007/978-981-99-3917-6_7.
- Yağcı, M. (2022). Educational Data Mining: Prediction of Students’ Academic Performance Using Machine Learning Algorithms, Smart Learning Environments, Vol. 9, No. 1, 11. doi:10.1186/s40561-022-00192-z.
- Noviandy, T. R., Hardi, I., Zahriah, Z., Sofyan, R., Sasmita, N. R., Hilal, I. S., and Idroes, G. M. (2024). Environmental and Economic Clustering of Indonesian Provinces: Insights from K-Means Analysis, Leuser Journal of Environmental Studies, Vol. 2, No. 1, 41–51. doi:10.60084/ljes.v2i1.181.
- Sasmita, N. R., Khairul, M., Sofyan, H., Kruba, R., Mardalena, S., Dahlawy, A., Apriliansyah, F., Muliadi, M., Saputra, D. C. E., Noviandy, T. R., and Watsiq Maula, A. (2023). Statistical Clustering Approach: Mapping Population Indicators Through Probabilistic Analysis in Aceh Province, Indonesia, Infolitika Journal of Data Science, Vol. 1, No. 2, 63–72. doi:10.60084/ijds.v1i2.130.
- Ran, X., Xi, Y., Lu, Y., Wang, X., and Lu, Z. (2023). Comprehensive Survey on Hierarchical Clustering Algorithms and the Recent Developments, Artificial Intelligence Review, Vol. 56, No. 8, 8219–8264. doi:10.1007/s10462-022-10366-3.
- Hahs-Vaughn, D. L. (2021). Multivariate Statistics, Applied Multivariate Statistical Concepts. doi:10.4324/9781315816685-6.
- Dabhade, P., Agarwal, R., Alameen, K. P., Fathima, A. T., Sridharan, R., and Gopakumar, G. (2021). Educational Data Mining for Predicting Students’ Academic Performance Using Machine Learning Algorithms, Materials Today: Proceedings, Vol. 47, 5260–5267. doi:10.1016/j.matpr.2021.05.646.
- Kour, S., Kumar, R., and Gupta, M. (2021). Analysis of Student Performance Using Machine Learning Algorithms, 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA), IEEE, 1395–1403. doi:10.1109/ICIRCA51532.2021.9544935.
- Dol, S. M., and Jawandhiya, P. M. (2023). Classification Technique and Its Combination with Clustering and Association Rule Mining in Educational Data Mining — A Survey, Engineering Applications of Artificial Intelligence, Vol. 122, 106071. doi:10.1016/j.engappai.2023.106071.
- Chen, S., Xue, Y., and Cui, X. (2024). Information Literacy of College Students from Library Education in Smart Classrooms: Based on Big Data Exploring Data Mining Patterns Using Apriori Algorithm, Soft Computing, Vol. 28, No. 4, 3571–3589. doi:10.1007/s00500-023-09621-8.
- Yu, H. (2024). Research on the Application of Association Rule Algorithm Based on FP-Growth in College English Information Teaching, Proceedings of the International Conference on Modeling, Natural Language Processing and Machine Learning, ACM, New York, NY, USA, 23–27. doi:10.1145/3677779.3677783.
- Feng, G., and Fan, M. (2024). Research on Learning Behavior Patterns from the Perspective of Educational Data Mining: Evaluation, Prediction and Visualization, Expert Systems with Applications, Vol. 237, 121555. doi:10.1016/j.eswa.2023.121555.
- Ramaswami, G., Susnjak, T., Mathrani, A., and Umer, R. (2023). Use of Predictive Analytics within Learning Analytics Dashboards: A Review of Case Studies, Technology, Knowledge and Learning, Vol. 28, No. 3, 959–980. doi:10.1007/s10758-022-09613-x.
- DOBASHI, K., HO, C. P., FULFORD, C. P., and Lin, M.-F. G. (2019). A Heat Map Generation to Visualize Engagement in Classes Using Moodle Learning Logs, 2019 4th International Conference on Information Technology (InCIT), IEEE, 138–143. doi:10.1109/INCIT.2019.8912068.
- Becheru, A., Calota, A., and Popescu, E. (2018). Analyzing Students’ Collaboration Patterns in a Social Learning Environment Using StudentViz Platform, Smart Learning Environments, Vol. 5, No. 1, 18. doi:10.1186/s40561-018-0063-0.
- Rabbany, R., Elatia, S., Takaffoli, M., and Zaïane, O. R. (2014). Collaborative Learning of Students in Online Discussion Forums: A Social Network Analysis Perspective, 441–466. doi:10.1007/978-3-319-02738-8_16.
- Huang Yi, Sun Shiyu, Duan Xiusheng, and Chen Zhigang. (2016). A Study on Deep Neural Networks Framework, 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), IEEE, 1519–1522. doi:10.1109/IMCEC.2016.7867471.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Emran, T. B., Tallei, T. E., Helwani, Z., and Idroes, R. (2023). Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review, Infolitika Journal of Data Science, Vol. 1, No. 1, 32–41. doi:10.60084/ijds.v1i1.91.
- Suryadevara, G., and Pachipulusu, P. (2025). Integrating Real-Time Data Streams, 67–90. doi:10.4018/979-8-3373-3952-8.ch003.
- Ahammad, N., Saiful Bahri, F. D., and Husaini, H. (2024). Exploring the Open-Source Impact on Bangladesh Academic Library Service Sustainability, Journal of Information, Communication and Ethics in Society, Vol. 22, No. 4, 478–493. doi:10.1108/JICES-06-2024-0080.
- Thilagaraj, T., and Sengottaiyan, N. (2017). A Review of Educational Data Mining in Higher Education System, 349–358. doi:10.15439/2017R87.
- Raschka, S., Patterson, J., and Nolet, C. (2020). Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence, Information, Vol. 11, No. 4, 193. doi:10.3390/info11040193.
- Ihantola, P., Vihavainen, A., Ahadi, A., Butler, M., Börstler, J., Edwards, S. H., Isohanni, E., Korhonen, A., Petersen, A., Rivers, K., Rubio, M. Á., Sheard, J., Skupas, B., Spacco, J., Szabo, C., and Toll, D. (2015). Educational Data Mining and Learning Analytics in Programming, Proceedings of the 2015 ITiCSE on Working Group Reports, ACM, New York, NY, USA, 41–63. doi:10.1145/2858796.2858798.
- Munna, M. S. H., Hossain, M. R., and Saylo, K. R. (2024). Digital Education Revolution: Evaluating LMS-Based Learning and Traditional Approaches, Journal of Innovative Technology Convergence, Vol. 6, No. 2, 21–40. doi:10.69478/JITC2024v6n002a03.
- Sáiz-Manzanares, M. C., Rodríguez-Díez, J. J., Díez-Pastor, J. F., Rodríguez-Arribas, S., Marticorena-Sánchez, R., and Ji, Y. P. (2021). Monitoring of Student Learning in Learning Management Systems: An Application of Educational Data Mining Techniques, Applied Sciences, Vol. 11, No. 6, 2677. doi:10.3390/app11062677.
- Althati, C., Tomar, M., and Shanmugam, L. (2024). Enhancing Data Integration and Management: The Role of AI and Machine Learning in Modern Data Platforms, Journal of Artificial Intelligence General Science (JAIGS) ISSN:3006-4023, Vol. 2, No. 1, 220–232. doi:10.60087/jaigs.v2i1.154.
- Noviandy, T. R., Zahriah, Z., Yandri, E., Jalil, Z., Yusuf, M., Yusof, N. I. S. M., Lala, A., and Idroes, R. (2024). Machine Learning for Early Detection of Dropout Risks and Academic Excellence: A Stacked Classifier Approach, Journal of Educational Management and Learning, Vol. 2, No. 1, 28–34. doi:10.60084/jeml.v2i1.191.
- Alruwais, N., and Zakariah, M. (2023). Student-Engagement Detection in Classroom Using Machine Learning Algorithm, Electronics, Vol. 12, No. 3, 731. doi:10.3390/electronics12030731.
- Maulana, A., Idroes, G. M., Kemala, P., Maulydia, N. B., Sasmita, N. R., Tallei, T. E., Sofyan, H., and Rusyana, A. (2023). Leveraging Artificial Intelligence to Predict Student Performance: A Comparative Machine Learning Approach, Journal of Educational Management and Learning, Vol. 1, No. 2, 64–70. doi:10.60084/jeml.v1i2.132.
- Demartini, C. G., Sciascia, L., Bosso, A., and Manuri, F. (2024). Artificial Intelligence Bringing Improvements to Adaptive Learning in Education: A Case Study, Sustainability, Vol. 16, No. 3, 1347. doi:10.3390/su16031347.
- Bennett, L., and Abusalem, A. (2024). Artificial Intelligence (AI) and Its Potential Impact on the Future of Higher Education, Athens Journal of Education, Vol. 11, No. 3, 195–212. doi:10.30958/aje.11-3-2.
- Goren, O., Cohen, L., and Rubinstein, A. (2024). Early Prediction of Student Dropout in Higher Education Using Machine Learning Models, Proceedings of the 17th International Conference on Educational Data Mining, 349–359.
- Johar, N. A., Kew, S. N., Tasir, Z., and Koh, E. (2023). Learning Analytics on Student Engagement to Enhance Students’ Learning Performance: A Systematic Review, Sustainability, Vol. 15, No. 10, 7849. doi:10.3390/su15107849.
- Peng, H., Ma, S., and Spector, J. M. (2019). Personalized Adaptive Learning: An Emerging Pedagogical Approach Enabled by a Smart Learning Environment, Smart Learning Environments, Vol. 6, No. 1, 9. doi:10.1186/s40561-019-0089-y.
- Park, H. S., and Yoo, S. J. (2021). Early Dropout Prediction in Online Learning of University Using Machine Learning, JOIV : International Journal on Informatics Visualization, Vol. 5, No. 4, 347. doi:10.30630/joiv.5.4.732.
- Zhang, M., Fan, J., Sharma, A., and Kukkar, A. (2022). Data Mining Applications in University Information Management System Development, Journal of Intelligent Systems, Vol. 31, No. 1, 207–220. doi:10.1515/jisys-2022-0006.
- Koc, T., and Akin, P. (2022). Estimation of High School Entrance Examination Success Rates Using Machine Learning and Beta Regression Models, Journal of Intelligent Systems: Theory and Applications, Vol. 5, No. 1, 9–15. doi:10.38016/jista.922663.
- Aldhafeeri, F. M., and Alotaibi, A. A. (2022). Effectiveness of Digital Education Shifting Model on High School Students’ Engagement, Education and Information Technologies, Vol. 27, No. 5, 6869–6891. doi:10.1007/s10639-021-10879-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Teuku Rizky Noviandy, Ghazi Mauer Idroes, Maria Paristiowati, Rinaldi Idroes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.