Optimizing University Admissions: A Machine Learning Perspective
DOI:
https://doi.org/10.60084/jeml.v1i1.46Keywords:
Educational management, Machine learning, University admission, Prediction modelAbstract
The university admission process plays a pivotal role in shaping the future of aspiring students. However, traditional methods of admission decisions often fall short in capturing the holistic capabilities of individuals and may introduce bias. This study aims to improve the admission process by developing and evaluating machine learning approach to predict the likelihood of university admission. Using a dataset of previous applicants' information, advanced algorithms such as K-Nearest Neighbors, Random Forest, Support Vector Regression, and XGBoost are employed. These algorithms are applied, and their performance is compared to determine the best model to predict university admission. Among the models evaluated, the Random Forest algorithm emerged as the most reliable and effective in predicting admission outcomes. Through comprehensive analysis and evaluation, the Random Forest model demonstrated its superior performance, consistency, and dependability. The results show the importance of variables such as academic performance and provide insights into the accuracy and reliability of the model. This research has the potential to empower aspiring applicants and bring positive changes to the university admission process.
Downloads
References
- Prakhov, I., and Yudkevich, M. (2019). University admission in Russia: Do the wealthier benefit from standardized exams?, International Journal of Educational Development, Vol. 65, 98–105. doi:10.1016/j.ijedudev.2017.08.007
- Westkamp, A. (2013). An analysis of the German university admissions system, Economic Theory, Vol. 53, No. 3, 561–589. doi:10.1007/s00199-012-0704-4
- Stemler, S. E. (2012). What Should University Admissions Tests Predict?, Educational Psychologist, Vol. 47, No. 1, 5–17. doi:10.1080/00461520.2011.611444
- Mountford-Zimdars, A., Moore, J., and Graham, J. (2016). Is contextualised admission the answer to the access challenge?, Perspectives: Policy and Practice in Higher Education, Vol. 20, No. 4, 143–150. doi:10.1080/13603108.2016.1203369
- Mengash, H. A. (2020). Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems, IEEE Access, Vol. 8, 55462–55470. doi:10.1109/ACCESS.2020.2981905
- Waters, A., and Miikkulainen, R. (2014). GRADE: Machine Learning Support for Graduate Admissions, AI Magazine, Vol. 35, No. 1, 64. doi:10.1609/aimag.v35i1.2504
- Shahane, P. (2022). Campus Placements Prediction & Analysis using Machine Learning, 2022 International Conference on Emerging Smart Computing and Informatics (ESCI), IEEE, 1–5. doi:10.1109/ESCI53509.2022.9758214
- Walid, M. A. A., Ahmed, S. M. M., Zeyad, M., Galib, S. M. S., and Nesa, M. (2022). Analysis of machine learning strategies for prediction of passing undergraduate admission test, International Journal of Information Management Data Insights, Vol. 2, No. 2, 100111. doi:10.1016/j.jjimei.2022.100111
- Idroes, R., Maulana, A., Noviandy, T. R., Suhendra, R., Sasmita, N. R., Lala, A., and Irvanizam. (2020). A Genetic Algorithm to Determine Research Consultation Schedules in Campus Environment, IOP Conference Series: Materials Science and Engineering, Vol. 796, 012033. doi:10.1088/1757-899X/796/1/012033
- Yudono, M. A. S., Faris, R. M., De Wibowo, A., Sidik, M., Sembiring, F., and Aji, S. F. (2022). Fuzzy Decision Support System for ABC University Student Admission Selection. doi:10.2991/aebmr.k.220204.024
- Acharya, M. S., Armaan, A., and Antony, A. S. (2019). A Comparison of Regression Models for Prediction of Graduate Admissions, 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), IEEE, 1–5. doi:10.1109/ICCIDS.2019.8862140
- Kramer, O. (2013). K-Nearest Neighbors, 13–23. doi:10.1007/978-3-642-38652-7_2
- Biau, G., and Scornet, E. (2016). A random forest guided tour, TEST, Vol. 25, No. 2, 197–227. doi:10.1007/s11749-016-0481-7
- Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12
- Suthaharan, S. (2016). Support Vector Machine, 207–235. doi:10.1007/978-1-4899-7641-3_9
- Noviandy, T. R., Maulana, A., Sasmita, N. R., Suhendra, R., Irvanizam, I., Muslem, M., Idroes, G. M., Yusuf, M., Sofyan, H., Abidin, T. F., and Idroes, R. (2022). The Prediction of Kovats Retention Indices of Essential Oils at Gas Chromatography Using Genetic Algorithm-Multiple Linear Regression and Support Vector Regression, Journal of Engineering Science and Technology, Vol. 17, No. 1, 306–326
- Agustia, M., Noviandy, T. R., Maulana, A., Suhendra, R., Muslem, M., Sasmita, N. R., Idroes, G. M., Rahimah, S., Afidh, R. P. F., Subianto, M., Irvanizam, I., and Idroes, R. (2022). Application of Fuzzy Support Vector Regression to Predict the Kovats Retention Indices of Flavors and Fragrances, 2022 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 13–18. doi:10.1109/ICELTICs56128.2022.9932124
- Chen, T., and Guestrin, C. (2016). Xgboost: A scalable tree boosting system, Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794
- AlGhamdi, A., Barsheed, A., AlMshjary, H., and AlGhamdi, H. (2020). A Machine Learning Approach for Graduate Admission Prediction, Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing, ACM, New York, NY, USA, 155–158. doi:10.1145/3388818.3393716
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Aga Maulana, Teuku Rizky Noviandy, Novi Reandy Sasmita, Maria Paristiowati, Rivansyah Suhendra, Erkata Yandri, Justinus Satrio, Rinaldi Idroes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















