Optimizing University Admissions: A Machine Learning Perspective

Authors

  • Aga Maulana Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Teuku Rizky Noviandy Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Novi Reandy Sasmita Computational and Applied Statistics Research Group, Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Maria Paristiowati Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Jakarta, Jakarta 13220, Indonesia
  • Rivansyah Suhendra Department of Information Technology, Faculty of Engineering, Universitas Teuku Umar, Aceh Barat 23681, Indonesia
  • Erkata Yandri Graduate School of Renewable Energy, Darma Persada University, Jl. Radin Inten 2, Pondok Kelapa, East Jakarta 13450, Indonesia
  • Justinus Satrio Department of Chemical Engineering, Villanova University, Villanova 19085, United States
  • Rinaldi Idroes School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/jeml.v1i1.46

Keywords:

Educational management, Machine learning, University admission, Prediction model

Abstract

The university admission process plays a pivotal role in shaping the future of aspiring students. However, traditional methods of admission decisions often fall short in capturing the holistic capabilities of individuals and may introduce bias. This study aims to improve the admission process by developing and evaluating machine learning approach to predict the likelihood of university admission. Using a dataset of previous applicants' information, advanced algorithms such as K-Nearest Neighbors, Random Forest, Support Vector Regression, and XGBoost are employed. These algorithms are applied, and their performance is compared to determine the best model to predict university admission. Among the models evaluated, the Random Forest algorithm emerged as the most reliable and effective in predicting admission outcomes. Through comprehensive analysis and evaluation, the Random Forest model demonstrated its superior performance, consistency, and dependability. The results show the importance of variables such as academic performance and provide insights into the accuracy and reliability of the model. This research has the potential to empower aspiring applicants and bring positive changes to the university admission process.

Downloads

Download data is not yet available.

References

  1. Prakhov, I., and Yudkevich, M. (2019). University admission in Russia: Do the wealthier benefit from standardized exams?, International Journal of Educational Development, Vol. 65, 98–105. doi:10.1016/j.ijedudev.2017.08.007
  2. Westkamp, A. (2013). An analysis of the German university admissions system, Economic Theory, Vol. 53, No. 3, 561–589. doi:10.1007/s00199-012-0704-4
  3. Stemler, S. E. (2012). What Should University Admissions Tests Predict?, Educational Psychologist, Vol. 47, No. 1, 5–17. doi:10.1080/00461520.2011.611444
  4. Mountford-Zimdars, A., Moore, J., and Graham, J. (2016). Is contextualised admission the answer to the access challenge?, Perspectives: Policy and Practice in Higher Education, Vol. 20, No. 4, 143–150. doi:10.1080/13603108.2016.1203369
  5. Mengash, H. A. (2020). Using Data Mining Techniques to Predict Student Performance to Support Decision Making in University Admission Systems, IEEE Access, Vol. 8, 55462–55470. doi:10.1109/ACCESS.2020.2981905
  6. Waters, A., and Miikkulainen, R. (2014). GRADE: Machine Learning Support for Graduate Admissions, AI Magazine, Vol. 35, No. 1, 64. doi:10.1609/aimag.v35i1.2504
  7. Shahane, P. (2022). Campus Placements Prediction & Analysis using Machine Learning, 2022 International Conference on Emerging Smart Computing and Informatics (ESCI), IEEE, 1–5. doi:10.1109/ESCI53509.2022.9758214
  8. Walid, M. A. A., Ahmed, S. M. M., Zeyad, M., Galib, S. M. S., and Nesa, M. (2022). Analysis of machine learning strategies for prediction of passing undergraduate admission test, International Journal of Information Management Data Insights, Vol. 2, No. 2, 100111. doi:10.1016/j.jjimei.2022.100111
  9. Idroes, R., Maulana, A., Noviandy, T. R., Suhendra, R., Sasmita, N. R., Lala, A., and Irvanizam. (2020). A Genetic Algorithm to Determine Research Consultation Schedules in Campus Environment, IOP Conference Series: Materials Science and Engineering, Vol. 796, 012033. doi:10.1088/1757-899X/796/1/012033
  10. Yudono, M. A. S., Faris, R. M., De Wibowo, A., Sidik, M., Sembiring, F., and Aji, S. F. (2022). Fuzzy Decision Support System for ABC University Student Admission Selection. doi:10.2991/aebmr.k.220204.024
  11. Acharya, M. S., Armaan, A., and Antony, A. S. (2019). A Comparison of Regression Models for Prediction of Graduate Admissions, 2019 International Conference on Computational Intelligence in Data Science (ICCIDS), IEEE, 1–5. doi:10.1109/ICCIDS.2019.8862140
  12. Kramer, O. (2013). K-Nearest Neighbors, 13–23. doi:10.1007/978-3-642-38652-7_2
  13. Biau, G., and Scornet, E. (2016). A random forest guided tour, TEST, Vol. 25, No. 2, 197–227. doi:10.1007/s11749-016-0481-7
  14. Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12
  15. Suthaharan, S. (2016). Support Vector Machine, 207–235. doi:10.1007/978-1-4899-7641-3_9
  16. Noviandy, T. R., Maulana, A., Sasmita, N. R., Suhendra, R., Irvanizam, I., Muslem, M., Idroes, G. M., Yusuf, M., Sofyan, H., Abidin, T. F., and Idroes, R. (2022). The Prediction of Kovats Retention Indices of Essential Oils at Gas Chromatography Using Genetic Algorithm-Multiple Linear Regression and Support Vector Regression, Journal of Engineering Science and Technology, Vol. 17, No. 1, 306–326
  17. Agustia, M., Noviandy, T. R., Maulana, A., Suhendra, R., Muslem, M., Sasmita, N. R., Idroes, G. M., Rahimah, S., Afidh, R. P. F., Subianto, M., Irvanizam, I., and Idroes, R. (2022). Application of Fuzzy Support Vector Regression to Predict the Kovats Retention Indices of Flavors and Fragrances, 2022 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 13–18. doi:10.1109/ICELTICs56128.2022.9932124
  18. Chen, T., and Guestrin, C. (2016). Xgboost: A scalable tree boosting system, Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794
  19. AlGhamdi, A., Barsheed, A., AlMshjary, H., and AlGhamdi, H. (2020). A Machine Learning Approach for Graduate Admission Prediction, Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing, ACM, New York, NY, USA, 155–158. doi:10.1145/3388818.3393716

Downloads

Published

2023-06-27

How to Cite

Maulana, A., Noviandy, T. R., Sasmita, N. R., Paristiowati, M., Suhendra, R., Yandri, E., Satrio, J., & Idroes, R. (2023). Optimizing University Admissions: A Machine Learning Perspective. Journal of Educational Management and Learning, 1(1), 1–7. https://doi.org/10.60084/jeml.v1i1.46

Issue

Section

Articles