Augmented Reality and Student Learning: Analysis of Mental Models of Salt Hydrolysis at SMAN 51 Jakarta, Indonesia
DOI:
https://doi.org/10.60084/jeml.v1i1.53Keywords:
Augmented reality, Mental model, Salt hydrolysis, Submicroscopic representations, Science educationAbstract
This study aimed to ascertain students' mental models while learning about salt hydrolysis through augmented reality (AR). The study comprised 36 participants from Public High School 51 in Jakarta. A descriptive qualitative approach was adopted for this research, employing various data collection methods such as written drawings, interviews, classroom observations, teacher notes, student worksheets, and final tests. In categorizing students' mental models, three main types emerged: scientific, synthetic, and initial mental models. The findings revealed that 7.20% of students fell into the initial mental model category, 53.90% exhibited synthetic mental models, and 38.90% demonstrated scientific mental models. Notably, incorporating AR into salt hydrolysis learning predominantly influenced the development of synthetic mental models. The study's results also indicated that the utilization of AR positively enhanced students' spatial abilities in understanding submicroscopic representations.
Downloads
References
- Andina, R. E., Rahmawati, Y., Ridwan, A. (2019). Analysis of students’ mental model of salt hydrolysis concepts at Klaten, Central Java, Journal of Physics: Conference Series, Vol. 1157, 042009. doi:10.1088/1742-6596/1157/4/042009
- Latifah, S., Sugiharto, S., Saputro, A. N. C. (2014). Studi komparasi penggunaan praktikum dan demonstrasi pada metode problem solving terhadap prestasi belajar siswa materi hidrolisis garam kelas xi ilmu alam sma al islam 1 surakarta tahun pelajaran 2010/2011, Jurnal Pendidikan Kimia, Vol. 3, No. 3, 111–120
- Treagust, D., Chittleborough, G., Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations, International Journal of Science Education, Vol. 25, No. 11, 1353–1368. doi:10.1080/0950069032000070306
- Hinton, M. E., Nakhleh, M. B. (1999). Students? Microscopic, Macroscopic, and Symbolic Representations of Chemical Reactions, The Chemical Educator, Vol. 4, No. 5, 158–167. doi:10.1007/s00897990325a
- Harrison, A. G., Treagust, D. F. (2000). A typology of school science models, International Journal of Science Education, Vol. 22, No. 9, 1011–1026. doi:10.1080/095006900416884
- COLL, R. K., TAYLOR, N. (2002). MENTAL MODELS IN CHEMISTRY: SENIOR CHEMISTRY STUDENTS’ MENTAL MODELS OF CHEMICAL BONDING, Chem. Educ. Res. Pract., Vol. 3, No. 2, 175–184. doi:10.1039/B2RP90014A
- Rouse, W. B., Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models., Psychological Bulletin, Vol. 100, No. 3, 349–363. doi:10.1037/0033-2909.100.3.349
- Chittleborough, G. (2004). The role of teaching models and chemical representations in developing students’ mental models of chemical phenomena, Curtin University
- Kurnaz, M. A., Emen, A. Y. (2014). Student Mental Models Related to Expansion and Contraction., Acta Didactica Napocensia, Vol. 7, No. 1, 59–67
- Maratusholihah, N. F., Rahayu, S., Fajaroh, F. (2017). Analisis miskonsepsi siswa sma pada materi hidrolisis garam dan larutan penyangga, Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, Vol. 2, No. 7, 919–926
- Idroes, G. M., Noviandy, T. R., Maulana, A., Irvanizam, I., Jalil, Z., Lensoni, L., Lala, A., Abas, A. H., Tallei, T. E., Idroes, R. (2023). Student Perspectives on the Role of Artificial Intelligence in Education: A Survey-Based Analysis, Journal of Educational Management and Learning, Vol. 1, No. 1, 8–15. doi:10.60084/jeml.v1i1.58
- Supriadi, S., Wildan, W., Siahaan, J., Muntari, M., Haris, M. (2023). Pengembangan Media Pembelajaran Kimia Berbasis Teknologi Augmented Reality (AR) untuk Melatih Model Mental Siswa SMA di Daerah Geopark Rinjani, Chemistry Education Practice, Vol. 6, No. 1, 8–14
- Garzón, J. (2021). An overview of twenty-five years of augmented reality in education, Multimodal Technologies and Interaction, Vol. 5, No. 7, 37
- Suryawinata, B. A. (2010). Pemanfaatan augmented reality dalam memvisualisasikan produk perumahan melalui internet, ComTech: Computer, Mathematics and Engineering Applications, Vol. 1, No. 2, 758–769
- Latipah, J., Jamilah, S. N., Sari, S. T. (2021). Analysis of student’s mental model through representation chemistry textbooks based on augmented reality, Journal of Physics: Conference Series (Vol. 1760), IOP Publishing, 12050
- Sunyono, S., Sudjarwo, S. (2018). Mental models of atomic structure concepts of 11th grade chemistry students
- Amalia, F. R., Ibnu, S., Widarti, H. R., Wuni, H. (2018). Students’ Mental Models of Acid and Base Concepts Taught Using Cognitive Apprenticeship Learning Model, Jurnal Pendidikan IPA Indonesia, Vol. 7, No. 2, 187–192
- Supriadi, S., Ibnu, S., Yahmin, Y. (2018). Analisis model mental mahasiswa pendidikan kimia dalam memahami berbagai jenis reaksi kimia, Jurnal Pijar MIPA, Vol. 13, No. 1, 1–5
- Guba, E. G., Lincoln, Y. S. (1989). Fourth Generation Evaluation, Sage
- Diaz, C., Hincapié, M., Moreno, G. (2015). How the Type of Content in Educative Augmented Reality Application Affects the Learning Experience, Procedia Computer Science, Vol. 75, 205–212. doi:10.1016/j.procs.2015.12.239
- Dewi, K. M., Suja, I. W., Sastrawidana, I. D. K. (2018). MODEL MENTAL SISWA TENTANG TERMOKIMIA, Jurnal Pendidikan Kimia Undiksha, Vol. 2, No. 2, 45. doi:10.23887/jjpk.v2i2.21165
- Whitten, K. H., Davis, R. E., Peck, M. L., Stanley, G. G. (2013). Chemistry 10th, United States of America: Cengage Learning
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Anisa Umayah, Maria Paristiowati, Hanhan Dianhar, Nur Azizah Putri Hasibuan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















