Student Perspectives on the Role of Artificial Intelligence in Education: A Survey-Based Analysis

Authors

  • Ghazi Mauer Idroes Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Teuku Rizky Noviandy Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Aga Maulana Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Irvanizam Irvanizam Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Zulkarnain Jalil Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Lensoni Lensoni Department of Public Health, Faculty of Public Health, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Andi Lala School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Abdul Hawil Abas Faculty of Bioscience Engineering, Ghent University, Gent 9000, Belgium
  • Trina Ekawati Tallei Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
  • Rinaldi Idroes School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/jeml.v1i1.58

Keywords:

Artificial intelligence, Education, Student perspectives, Advantages, Integration, Learning process

Abstract

Artificial intelligence (AI) has emerged as a powerful technology that has the potential to transform education. This study aims to comprehensively understand students' perspectives on using AI within educational settings to gain insights about the role of AI in education and investigate their perceptions regarding the advantages, challenges, and expectations associated with integrating AI into the learning process. We analyzed the student responses from a survey that targeted students from diverse academic backgrounds and educational levels. The results show that, in general, students have a positive perception of AI and believe AI is beneficial for education. However, they are still concerned about some of the drawbacks of using AI. Therefore, it is necessary to take steps to minimize the negative impact while continuing to take advantage of the advantages of AI in education.

Downloads

Download data is not yet available.

References

  1. Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., dos Passos Gomes, G., Häse, F., Jinich, A., Nigam, A., Yao, Z., Aspuru-Guzik, A. (2022). On scientific understanding with artificial intelligence, Nature Reviews Physics, Vol. 4, No. 12, 761–769. doi:10.1038/s42254-022-00518-3
  2. Zhang, B., Zhu, J., Su, H. (2023). Toward the third generation artificial intelligence, Science China Information Sciences, Vol. 66, No. 2, 121101
  3. Kreuzberger, D., Kühl, N., Hirschl, S. (2023). Machine learning operations (mlops): Overview, definition, and architecture, IEEE Access
  4. Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12
  5. Khurana, D., Koli, A., Khatter, K., Singh, S. (2023). Natural language processing: State of the art, current trends and challenges, Multimedia Tools and Applications, Vol. 82, No. 3, 3713–3744
  6. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing, ACM Computing Surveys, Vol. 55, No. 9, 1–35
  7. Idroes, G. M., Maulana, A., Suhendra, R., Lala, A., Karma, T., Kusumo, F., Hewindati, Y. T., Noviandy, T. R. (2023). TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 1–8. doi:10.60084/ljes.v1i1.42
  8. Cenggoro, T. W., Pardamean, B. (2023). A systematic literature review of machine learning application in COVID-19 medical image classification, Procedia Computer Science, Vol. 216, 749–756
  9. Suhendra, R., Arnia, F., Idroes, R., Earlia, N., Suhartono, E. (2019). A Novel Approach to Multi-class Atopic Dermatitis Disease Severity Scoring using Multi-class SVM, 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), IEEE, 35–39. doi:10.1109/CYBERNETICSCOM.2019.8875693
  10. Kahlon, N. K., Singh, W. (2023). Machine translation from text to sign language: a systematic review, Universal Access in the Information Society, Vol. 22, No. 1, 1–35
  11. Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., Sasmita, N. R., Muslem, M., Idroes, G. M., Kemala, P., Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index, International Review on Modelling and Simulations (IREMOS), Vol. 14, No. 2, 137. doi:10.15866/iremos.v14i2.20460
  12. Agustia, M., Noviandy, T. R., Maulana, A., Suhendra, R., Muslem, M., Sasmita, N. R., Idroes, G. M., Rahimah, S., Afidh, R. P. F., Subianto, M. (2022). Application of Fuzzy Support Vector Regression to Predict the Kovats Retention Indices of Flavors and Fragrances, 2022 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 13–18
  13. Kohnke, L., Moorhouse, B. L., Zou, D. (2023). ChatGPT for language teaching and learning, RELC Journal, 00336882231162868
  14. Hariri, W. (2023). Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing, ArXiv Preprint ArXiv:2304.02017
  15. Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E. (2023). ChatGPT for good? On opportunities and challenges of large language models for education, Learning and Individual Differences, Vol. 103, 102274
  16. Zhou, K.-Q., Nabus, H. (2023). The Ethical Implications of DALL-E: Opportunities and Challenges, Mesopotamian Journal of Computer Science, Vol. 2023, 17–23
  17. Roumeliotis, K. I., Tselikas, N. D. (2023). ChatGPT and Open-AI Models: A Preliminary Review, Future Internet, Vol. 15, No. 6, 192
  18. Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., Hyder, S. I. (2021). Artificial Intelligence and Its Role in Education, Sustainability, Vol. 13, No. 22, 12902. doi:10.3390/su132212902
  19. Pisica, A. I., Edu, T., Zaharia, R. M., Zaharia, R. (2023). Implementing Artificial Intelligence in Higher Education: Pros and Cons from the Perspectives of Academics, Societies, Vol. 13, No. 5, 118. doi:10.3390/soc13050118
  20. Chan, C. K. Y., Hu, W. (2023). Students’ Voices on Generative AI: Perceptions, Benefits, and Challenges in Higher Education, ArXiv Preprint ArXiv:2305.00290
  21. Presbitero, A., Teng-Calleja, M. (2023). Job attitudes and career behaviors relating to employees’ perceived incorporation of artificial intelligence in the workplace: a career self-management perspective, Personnel Review, Vol. 52, No. 4, 1169–1187
  22. Giroux, M., Kim, J., Lee, J. C., Park, J. (2022). Artificial intelligence and declined guilt: Retailing morality comparison between human and AI, Journal of Business Ethics, Vol. 178, No. 4, 1027–1041
  23. Kapania, S., Siy, O., Clapper, G., SP, A. M., Sambasivan, N. (2022). ” Because AI is 100% right and safe”: User attitudes and sources of AI authority in India, Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–18
  24. Elish, M. C., Boyd, D. (2018). Situating methods in the magic of Big Data and AI, Communication Monographs, Vol. 85, No. 1, 57–80
  25. Zhang, Y., Weng, Y., Lund, J. (2022). Applications of explainable artificial intelligence in diagnosis and surgery, Diagnostics, Vol. 12, No. 2, 237
  26. Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework, Human Resource Management Review, Vol. 33, No. 1, 100899
  27. Al-Surmi, A., Bashiri, M., Koliousis, I. (2022). AI based decision making: combining strategies to improve operational performance, International Journal of Production Research, Vol. 60, No. 14, 4464–4486
  28. Petrașcu, G. M. (2023). Student’s Perceptions of AI in Education, from https://www.kaggle.com/datasets/gianinamariapetrascu/survey-on-students-perceptions-of-ai-in-education, accessed 2-5-2023

Downloads

Published

2023-07-24

How to Cite

Idroes, G. M., Noviandy, T. R., Maulana, A., Irvanizam, I., Jalil, Z., Lensoni, L., Lala, A., Abas, A. H., Tallei, T. E., & Idroes, R. (2023). Student Perspectives on the Role of Artificial Intelligence in Education: A Survey-Based Analysis. Journal of Educational Management and Learning, 1(1), 8–15. https://doi.org/10.60084/jeml.v1i1.58

Issue

Section

Articles