Student Perspectives on the Role of Artificial Intelligence in Education: A Survey-Based Analysis
DOI:
https://doi.org/10.60084/jeml.v1i1.58Keywords:
Artificial intelligence, Education, Student perspectives, Advantages, Integration, Learning processAbstract
Artificial intelligence (AI) has emerged as a powerful technology that has the potential to transform education. This study aims to comprehensively understand students' perspectives on using AI within educational settings to gain insights about the role of AI in education and investigate their perceptions regarding the advantages, challenges, and expectations associated with integrating AI into the learning process. We analyzed the student responses from a survey that targeted students from diverse academic backgrounds and educational levels. The results show that, in general, students have a positive perception of AI and believe AI is beneficial for education. However, they are still concerned about some of the drawbacks of using AI. Therefore, it is necessary to take steps to minimize the negative impact while continuing to take advantage of the advantages of AI in education.
Downloads
References
- Krenn, M., Pollice, R., Guo, S. Y., Aldeghi, M., Cervera-Lierta, A., Friederich, P., dos Passos Gomes, G., Häse, F., Jinich, A., Nigam, A., Yao, Z., Aspuru-Guzik, A. (2022). On scientific understanding with artificial intelligence, Nature Reviews Physics, Vol. 4, No. 12, 761–769. doi:10.1038/s42254-022-00518-3
- Zhang, B., Zhu, J., Su, H. (2023). Toward the third generation artificial intelligence, Science China Information Sciences, Vol. 66, No. 2, 121101
- Kreuzberger, D., Kühl, N., Hirschl, S. (2023). Machine learning operations (mlops): Overview, definition, and architecture, IEEE Access
- Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12
- Khurana, D., Koli, A., Khatter, K., Singh, S. (2023). Natural language processing: State of the art, current trends and challenges, Multimedia Tools and Applications, Vol. 82, No. 3, 3713–3744
- Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., Neubig, G. (2023). Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing, ACM Computing Surveys, Vol. 55, No. 9, 1–35
- Idroes, G. M., Maulana, A., Suhendra, R., Lala, A., Karma, T., Kusumo, F., Hewindati, Y. T., Noviandy, T. R. (2023). TeutongNet: A Fine-Tuned Deep Learning Model for Improved Forest Fire Detection, Leuser Journal of Environmental Studies, Vol. 1, No. 1, 1–8. doi:10.60084/ljes.v1i1.42
- Cenggoro, T. W., Pardamean, B. (2023). A systematic literature review of machine learning application in COVID-19 medical image classification, Procedia Computer Science, Vol. 216, 749–756
- Suhendra, R., Arnia, F., Idroes, R., Earlia, N., Suhartono, E. (2019). A Novel Approach to Multi-class Atopic Dermatitis Disease Severity Scoring using Multi-class SVM, 2019 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom), IEEE, 35–39. doi:10.1109/CYBERNETICSCOM.2019.8875693
- Kahlon, N. K., Singh, W. (2023). Machine translation from text to sign language: a systematic review, Universal Access in the Information Society, Vol. 22, No. 1, 1–35
- Idroes, R., Noviandy, T. R., Maulana, A., Suhendra, R., Sasmita, N. R., Muslem, M., Idroes, G. M., Kemala, P., Irvanizam, I. (2021). Application of Genetic Algorithm-Multiple Linear Regression and Artificial Neural Network Determinations for Prediction of Kovats Retention Index, International Review on Modelling and Simulations (IREMOS), Vol. 14, No. 2, 137. doi:10.15866/iremos.v14i2.20460
- Agustia, M., Noviandy, T. R., Maulana, A., Suhendra, R., Muslem, M., Sasmita, N. R., Idroes, G. M., Rahimah, S., Afidh, R. P. F., Subianto, M. (2022). Application of Fuzzy Support Vector Regression to Predict the Kovats Retention Indices of Flavors and Fragrances, 2022 International Conference on Electrical Engineering and Informatics (ICELTICs), IEEE, 13–18
- Kohnke, L., Moorhouse, B. L., Zou, D. (2023). ChatGPT for language teaching and learning, RELC Journal, 00336882231162868
- Hariri, W. (2023). Unlocking the Potential of ChatGPT: A Comprehensive Exploration of its Applications, Advantages, Limitations, and Future Directions in Natural Language Processing, ArXiv Preprint ArXiv:2304.02017
- Kasneci, E., Seßler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E. (2023). ChatGPT for good? On opportunities and challenges of large language models for education, Learning and Individual Differences, Vol. 103, 102274
- Zhou, K.-Q., Nabus, H. (2023). The Ethical Implications of DALL-E: Opportunities and Challenges, Mesopotamian Journal of Computer Science, Vol. 2023, 17–23
- Roumeliotis, K. I., Tselikas, N. D. (2023). ChatGPT and Open-AI Models: A Preliminary Review, Future Internet, Vol. 15, No. 6, 192
- Ahmad, S. F., Rahmat, M. K., Mubarik, M. S., Alam, M. M., Hyder, S. I. (2021). Artificial Intelligence and Its Role in Education, Sustainability, Vol. 13, No. 22, 12902. doi:10.3390/su132212902
- Pisica, A. I., Edu, T., Zaharia, R. M., Zaharia, R. (2023). Implementing Artificial Intelligence in Higher Education: Pros and Cons from the Perspectives of Academics, Societies, Vol. 13, No. 5, 118. doi:10.3390/soc13050118
- Chan, C. K. Y., Hu, W. (2023). Students’ Voices on Generative AI: Perceptions, Benefits, and Challenges in Higher Education, ArXiv Preprint ArXiv:2305.00290
- Presbitero, A., Teng-Calleja, M. (2023). Job attitudes and career behaviors relating to employees’ perceived incorporation of artificial intelligence in the workplace: a career self-management perspective, Personnel Review, Vol. 52, No. 4, 1169–1187
- Giroux, M., Kim, J., Lee, J. C., Park, J. (2022). Artificial intelligence and declined guilt: Retailing morality comparison between human and AI, Journal of Business Ethics, Vol. 178, No. 4, 1027–1041
- Kapania, S., Siy, O., Clapper, G., SP, A. M., Sambasivan, N. (2022). ” Because AI is 100% right and safe”: User attitudes and sources of AI authority in India, Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, 1–18
- Elish, M. C., Boyd, D. (2018). Situating methods in the magic of Big Data and AI, Communication Monographs, Vol. 85, No. 1, 57–80
- Zhang, Y., Weng, Y., Lund, J. (2022). Applications of explainable artificial intelligence in diagnosis and surgery, Diagnostics, Vol. 12, No. 2, 237
- Chowdhury, S., Dey, P., Joel-Edgar, S., Bhattacharya, S., Rodriguez-Espindola, O., Abadie, A., Truong, L. (2023). Unlocking the value of artificial intelligence in human resource management through AI capability framework, Human Resource Management Review, Vol. 33, No. 1, 100899
- Al-Surmi, A., Bashiri, M., Koliousis, I. (2022). AI based decision making: combining strategies to improve operational performance, International Journal of Production Research, Vol. 60, No. 14, 4464–4486
- Petrașcu, G. M. (2023). Student’s Perceptions of AI in Education, from https://www.kaggle.com/datasets/gianinamariapetrascu/survey-on-students-perceptions-of-ai-in-education, accessed 2-5-2023
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Ghazi Mauer Idroes, Teuku Rizky Noviandy, Aga Maulana, Irvanizam Irvanizam, Zulkarnain Jalil, Lensoni Lensoni, Andi Lala, Abdul Hawil Abas, Trina Ekawati Tallei, Rinaldi Idroes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




















