Bioactive Phytochemicals from Memecylon edule: Targeting Planktonic and Biofilm States of Pseudomonas aeruginosa
DOI:
https://doi.org/10.60084/mp.v3i1.258Keywords:
Antimicrobial drug discovery, Geothermal biodiversity, Natural product pharmacology, Antibiofilm innovation, Sustainable antimicrobial sourcesAbstract
The rise in antimicrobial resistance has prompted the search for potent antimicrobial agents, with plants from unique environments, such as geothermal areas, offering potential due to their diverse phytochemical profiles. This study evaluated the antiplanktonic and antibiofilm activity of M. edule fractions from the geothermal area, Jaboi, Sabang. Crude extracts of M. edule were sequentially fractionated using hexane, ethyl acetate, and ethanol. The resulting fractions were further analyzed for their phytochemical content and antiplanktonic and antibiofilm activities. The ethyl acetate fraction demonstrated superior antiplanktonic and antibiofilm activities compared to other fractions, inhibiting 50% of Pseudomonas aeruginosa planktonic and biofilm formation at a concentration of 10 mg/mL. The most potent fraction exhibited the phenolic content, 672.84 mg GAE/g extract, surpassing the other fractions. The GC-MS analysis shows the presence of pyrogallol, hexadecanoic acid, cedran-diol, and sitosterol. These findings highlight the potential of the ethyl acetate fraction of M. edule as a source of bioactive compounds with promising antiplanktonic and antibiofilm properties, laying the groundwork for future research into its therapeutic applications against biofilm-associated infections.
Downloads
References
- Chokshi, A., Sifri, Z., Cennimo, D., and Horng, H. (2019). Global Contributors to Antibiotic Resistance, Journal of Global Infectious Diseases, Vol. 11, No. 1, 36. doi:10.4103/jgid.jgid_110_18.
- Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Afidh, R. P. F., and Idroes, R. (2024). An Explainable Multi-Model Stacked Classifier Approach for Predicting Hepatitis C Drug Candidates, Sci, Vol. 6, No. 4, 81. doi:10.3390/sci6040081.
- Murray, C. J. L., Ikuta, K. S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., Wool, E., Johnson, S. C., Browne, A. J., Chipeta, M. G., Fell, F., Hackett, S., Haines-Woodhouse, G., Kashef Hamadani, B. H., Kumaran, E. A. P., McManigal, B., Achalapong, S., Agarwal, R., Akech, S., Albertson, S., Amuasi, J., Andrews, J., Aravkin, A., Ashley, E., Babin, F.-X., Bailey, F., Baker, S., Basnyat, B., Bekker, A., Bender, R., Berkley, J. A., Bethou, A., Bielicki, J., Boonkasidecha, S., Bukosia, J., Carvalheiro, C., Castañeda-Orjuela, C., Chansamouth, V., Chaurasia, S., Chiurchiù, S., Chowdhury, F., Clotaire Donatien, R., Cook, A. J., Cooper, B., Cressey, T. R., Criollo-Mora, E., Cunningham, M., Darboe, S., Day, N. P. J., De Luca, M., Dokova, K., Dramowski, A., Dunachie, S. J., Duong Bich, T., Eckmanns, T., Eibach, D., Emami, A., Feasey, N., Fisher-Pearson, N., Forrest, K., Garcia, C., Garrett, D., Gastmeier, P., Giref, A. Z., Greer, R. C., Gupta, V., Haller, S., Haselbeck, A., Hay, S. I., Holm, M., Hopkins, S., Hsia, Y., Iregbu, K. C., Jacobs, J., Jarovsky, D., Javanmardi, F., Jenney, A. W. J., Khorana, M., Khusuwan, S., Kissoon, N., Kobeissi, E., Kostyanev, T., Krapp, F., Krumkamp, R., Kumar, A., Kyu, H. H., Lim, C., Lim, K., Limmathurotsakul, D., Loftus, M. J., Lunn, M., Ma, J., Manoharan, A., Marks, F., May, J., Mayxay, M., Mturi, N., Munera-Huertas, T., Musicha, P., Musila, L. A., Mussi-Pinhata, M. M., Naidu, R. N., Nakamura, T., Nanavati, R., Nangia, S., Newton, P., Ngoun, C., Novotney, A., Nwakanma, D., Obiero, C. W., Ochoa, T. J., Olivas-Martinez, A., Olliaro, P., Ooko, E., Ortiz-Brizuela, E., Ounchanum, P., Pak, G. D., Paredes, J. L., Peleg, A. Y., Perrone, C., Phe, T., Phommasone, K., Plakkal, N., Ponce-de-Leon, A., Raad, M., Ramdin, T., Rattanavong, S., Riddell, A., Roberts, T., Robotham, J. V., Roca, A., Rosenthal, V. D., Rudd, K. E., Russell, N., Sader, H. S., Saengchan, W., Schnall, J., Scott, J. A. G., Seekaew, S., Sharland, M., Shivamallappa, M., Sifuentes-Osornio, J., Simpson, A. J., Steenkeste, N., Stewardson, A. J., Stoeva, T., Tasak, N., Thaiprakong, A., Thwaites, G., Tigoi, C., Turner, C., Turner, P., van Doorn, H. R., Velaphi, S., Vongpradith, A., Vongsouvath, M., Vu, H., Walsh, T., Walson, J. L., Waner, S., Wangrangsimakul, T., Wannapinij, P., Wozniak, T., Young Sharma, T. E. M. W., Yu, K. C., Zheng, P., Sartorius, B., Lopez, A. D., Stergachis, A., Moore, C., Dolecek, C., and Naghavi, M. (2022). Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis, The Lancet, Vol. 399, No. 10325, 629–655. doi:10.1016/S0140-6736(21)02724-0.
- Windels, E. M., Michiels, J. E., Fauvart, M., Wenseleers, T., Van den Bergh, B., and Michiels, J. (2019). Bacterial Persistence Promotes the Evolution of Antibiotic Resistance by Increasing Survival and Mutation Rates, The ISME Journal, Vol. 13, No. 5, 1239–1251. doi:10.1038/s41396-019-0344-9.
- CDC. (2024). Antimicrobial Resistance Threats in the United States, 2021-2022 United States, from https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html.
- Lyu, J., Chen, H., Bao, J., Liu, S., Chen, Y., Cui, X., Guo, C., Gu, B., and Li, L. (2023). Clinical Distribution and Drug Resistance of Pseudomonas aeruginosa in Guangzhou, China from 2017 to 2021, Journal of Clinical Medicine, Vol. 12, No. 3, 1189. doi:10.3390/jcm12031189.
- Reynolds, D., and Kollef, M. (2021). The Epidemiology and Pathogenesis and Treatment of Pseudomonas aeruginosa Infections: An Update, Drugs, Vol. 81, No. 18, 2117–2131. doi:10.1007/s40265-021-01635-6.
- Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., Liang, H., Song, X., and Wu, M. (2022). Pseudomonas aeruginosa: Pathogenesis, Virulence Factors, Antibiotic Resistance, Interaction with Host, Technology Advances and Emerging Therapeutics, Signal Transduction and Targeted Therapy, Vol. 7, No. 1, 199. doi:10.1038/s41392-022-01056-1.
- Ratte, T. A., Fatimawali, F., Tallei, T. E., Suoth, E. J., Antasionasti, I., and Yamlean, P. (2023). Evaluation of Antibacterial Properties from Endophytic Fungi of Chrysanthemum indicum (L.) Flowers against Escherichia coli and Staphylococcus aureus, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 2, 71–77. doi:10.61975/gjset.v1i2.15.
- Srinivasan, R., Natarajan, D., and Shivakumar, M. S. (2014). Antimicrobial and GC-MS Analysis of Memecylon edule Leaf Extracts, International Journal of Current Pharmaceutical Review and Research, Vol. 5, No. 1, 1–13.
- Bharathi, T. R., and Prakash, H. S. (2017). Comparative Evaluation of Antidiabetic and Antioxidant Potency of Different Extracts Obtained from Memecylon Species, International Journal of Pharmacy and Pharmaceutical Sciences, Vol. 9, No. 2, 187. doi:10.22159/ijpps.2017v9i2.15695.
- Nualkaew, S., Thongpraditchote, S., Wongkrajang, Y., Umehara, K., and Noguchi, H. (2017). Isolation of a New Compound, 2-Butanone 4-Glucopyranoside 6′- O -Gallate and Other 8 Compounds from the Anti-Inflammatory Leave Extracts of Memecylon edule Roxb, Natural Product Research, Vol. 31, No. 12, 1370–1378. doi:10.1080/14786419.2016.1253074.
- Hullatti, K. K., and Rai, V. R. (2004). Antimicrobial Activity of Memecylon malabaricum Leaves, Fitoterapia, Vol. 75, Nos. 3–4, 409–411. doi:10.1016/j.fitote.2004.02.007.
- Hegde, N. P., and Hungund, B. S. (2021). Isolation, Identification and In Vitro Biological Evaluation of Phytochemicals from Memecylon randerianum: A Medicinal Plant Endemic to Western Ghats of India, Natural Product Research, Vol. 35, No. 23, 5334–5338. doi:10.1080/14786419.2020.1756797.
- Lakshmi, M. V, and Swapna, T. S. (2021). Antimicrobial Compounds from the Leaves of Memecylon randerianum-An Ethnomedicinal Plant of Southern Western Ghats.
- Murugesan, S., Pannerselvam, A., and Tangavelou, A. C. (2011). Phytochemical Screening and Antimicrobial Activity of the Leaves of Memecylon umbellatum Burm. F., Journal of Applied Pharmaceutical Science, No. Issue, 42–45.
- Bharathi, T. R., Sekhar, S., Sampath Kumara, K. K., Madhusudhan, M. C., and Prakash, H. S. (2016). Metabolite Profiling by UPLC-PDA-ESI/HDMS and Antibacterial Activity of Memecylon talbotianum Brandis, Pharmacognosy Communications, Vol. 6, No. 4, 225–231. doi:10.5530/pc.2016.4.5.
- Manikandan, G., and Ramasubbu, R. (2020). Antimicrobial Activity of Leaf Extracts of Memecylon heyneanum Benth. Ex Wight & Arn.: An Endemic Tree Species of Southern Western Ghats, Advances in Zoology and Botany, Vol. 8, No. 3, 258–268.
- Idroes, R., Marwan, M., Yusuf, M., Muslem, M., and Helwani, Z. (2021). Geochemical Investigation on Jaboi Manifestation, Jaboi Volcano, Sabang, Indonesia, International Journal of GEOMATE, Vol. 20, No. 82. doi:10.21660/2021.82.j2114.
- Ningsih, D. S., and Idroes, R. (2022). In Vitro Cytotoxicity of Ethanolic Extract of The Leaf of Calotropis gigantea From Ie Jue Geothermal Area , Aceh-Indonesia, And Its Mouthwash Formulation Against Dental Pulp Cells, Journal of Apllied Pharmaceutical Science, Vol. 12, No. 02, 133–143. doi:10.7324/JAPS.2021.120213.
- Idroes, R., Khairan, and Fakri, F. (2017). Skrining Aktivitas Tumbuhan Yang Berpotensi Sebagai Bahan Antimikroba Di Kawasan Ie Jue (Upflow Geotermal Zone) Aceh Besar, Unsyiah Press, Banda Aceh.
- Nuraskin, C. A., Marlina, M., Idroes, R., Soraya, C., and Djufri, D. (2020). Antibacterial Activity Tests of N-hexane, Ethyl Acetate, and Methanol Leaves (Vitex) Extract (pinnata) against Streptococcus mutans, Macedonian Journal of Medical Sciences, Vol. 8, No. A, 181–184. doi:10.3889/oamjms.2020.3482.
- Nuraskin, C., Marlina, Idroes, R., Soraya, C., and Djufri. (2020). Identification of Secondary Metabolite of Laban Leaf Extract (Vitex pinnata L) from Geothermal Areas and Non-Geothermal of Agam Mountains in Aceh Besar, Aceh Province, Indonesia, Rasayan Journal of Chemistry, Vol. 13, No. 1, 18–23. doi:10.31788/RJC.2020.1315434.
- Suryawati, S., Salsabila, A., Balqisa, S. R., Suardi, H. N., Hertiani, T., Khairan, K., and Idroes, R. (2025). Utilizing Geothermal Botanical Resources: Evaluating Antiplanktonic and Biofilm Inhibitory Effects of Jaboi Area Plant Extracts, Journal of Pharmacy & Pharmacognosy Research, Vol. 13, No. 3, 682–694. doi:10.56499/jppres24.2133_13.3.682.
- Dolongtelide, J. I., Fatimawali, F., Tallei, T. E., Suoth, E. J., Simbala, H. E. I., Antasionasti, I., and Kalalo, M. J. (2023). In Vitro Antioxidant Activity of Chrysanthemum indicum Flowers Extract and Its Fraction, Malacca Pharmaceutics, Vol. 1, No. 2, 43–47. doi:10.60084/mp.v1i2.26.
- Maulydia, N. B., Idroes, R., Khairan, K., Tallei, T. E., and Mohd Fauzi, F. (2024). Ecotoxicological Insight of Phytochemicals, Toxicological Informatics, and Heavy Metal Concentration in Tridax procumbens L. in Geothermal Areas, Global Journal of Environmental Science and Management, Vol. 10, No. 1, 369–384. doi:10.22034/gjesm.2024.01.23.
- Yahya, M., Ginting, B., and Saidi, N. (2021). In-Vitro Screenings for Biological and Antioxidant Activities of Water Extract from Theobroma cacao L. Pod Husk: Potential Utilization in Foods, Molecules, Vol. 26, No. 22, 6915. doi:10.3390/molecules26226915.
- Haroen, U., Syafwan, S., Kurniawan, K., and Budiansyah, A. (2024). Determination of Total Phenolics, Flavonoids, and Testing of Antioxidant and Antibacterial Activities of Red Ginger (Zingiber officinale var. rubrum), Journal of Advanced Veterinary and Animal Research, 1. doi:10.5455/javar.2024.k755.
- Juárez-Rodríguez, M. M., Cortes-López, H., García-Contreras, R., González-Pedrajo, B., Díaz-Guerrero, M., Martínez-Vázquez, M., Rivera-Chávez, J. A., Soto-Hernández, R. M., and Castillo-Juárez, I. (2021). Tetradecanoic Acids With Anti-Virulence Properties Increase the Pathogenicity of Pseudomonas aeruginosa in a Murine Cutaneous Infection Model, Frontiers in Cellular and Infection Microbiology, Vol. 10. doi:10.3389/fcimb.2020.597517.
- George, T. K., Joy, A., Divya, K., and Jisha, M. S. (2019). In Vitro and In Silico Docking Studies of Antibacterial Compounds Derived from Endophytic Penicillium setosum, Microbial Pathogenesis, Vol. 131, 87–97. doi:10.1016/j.micpath.2019.03.033.
- Wink, M., and Schimmer, O. (2010). Molecular Modes of Action of Defensive Secondary Metabolites, Functions and Biotechnology of Plant Secondary Metabolites, Wiley-Blackwell, Oxford, UK, 21–161. doi:10.1002/9781444318876.ch2.
- Raghavanpillai Sabu, K., Sugathan, S., Idhayadhulla, A., Woldemariam, M., Aklilu, A., Biresaw, G., Tsegaye, B., and Manilal, A. (2022). Antibacterial, Antifungal, and Cytotoxic Activity of Excoecaria agallocha Leaf Extract, Journal of Experimental Pharmacology, Vol. Volume 14, 17–26. doi:10.2147/JEP.S339383.
- Abo-Elghiet, F., Rushdi, A., Ibrahim, M. H., Mahmoud, S. H., Rabeh, M. A., Alshehri, S. A., and El Menofy, N. G. (2023). Chemical Profile, Antibacterial, Antibiofilm, and Antiviral Activities of Pulicaria crispa Most Potent Fraction: An In Vitro and In Silico Study, Molecules, Vol. 28, No. 10, 4184. doi:10.3390/molecules28104184.
- Erkan Türkmen, K., Erdönmez, D., Sağlam, N., and Bali, E. B. (2019). Comparative Study of Inhibitory Potential of Dietary Phytochemicals Against Quorum Sensing Activity of and Biofilm Formation by Chromobacterium violaceum 12472, and Swimming and Swarming Behaviour of Pseudomonas aeruginosa PAO1, Food Technology and Biotechnology, Vol. 57, No. 2, 212–221. doi:10.17113/ftb.57.02.19.5823.
- Roese, K. H. C., Torlone, C., Cooper, L. A., Esposito, L., Deveau, A. M., Röse, U. S. R., and Burkholder, K. M. (2023). Pyrogallol Impairs Staphylococcal Biofilm Formation via Induction of Bacterial Oxidative Stress, Journal of Applied Microbiology, Vol. 134, No. 12. doi:10.1093/jambio/lxad270.
- Evangelina, I. A., Herdiyati, Y., Laviana, A., Rikmasari, R., Zubaedah, C., Anisah, ., and Kurnia, D. (2021). Bio-Mechanism Inhibitory Prediction of β-Sitosterol from Kemangi (Ocimum basilicum L.) as an Inhibitor of MurA Enzyme of Oral Bacteria: In vitro and in silico Study, Advances and Applications in Bioinformatics and Chemistry, Vol. Volume 14, 103–115. doi:10.2147/AABC.S301488.
- Srinivasan, R., Natarajan, D., and Shivakumar, M. S. (2017). Spectral Characterization and Antibacterial Activity of an Isolated Compound from Memecylon edule Leaves, Journal of Photochemistry and Photobiology B: Biology, Vol. 168, 20–24. doi:10.1016/j.jphotobiol.2017.01.019.
- Nakayama, M., Shimatani, K., Ozawa, T., Shigemune, N., Tomiyama, D., Yui, K., Katsuki, M., Ikeda, K., Nonaka, A., and Miyamoto, T. (2015). Mechanism for the Antibacterial Action of Epigallocatechin Gallate (EGCg) on Bacillus subtilis, Bioscience, Biotechnology, and Biochemistry, Vol. 79, No. 5, 845–854. doi:10.1080/09168451.2014.993356.
- Zhang, Y., Zhang, Y., Ma, R., Sun, W., and Ji, Z. (2023). Antibacterial Activity of Epigallocatechin Gallate (EGCG) against Shigella flexneri, International Journal of Environmental Research and Public Health, Vol. 20, No. 6, 4676. doi:10.3390/ijerph20064676.
- Caligiani, A., Malavasi, G., Palla, G., Marseglia, A., Tognolini, M., and Bruni, R. (2013). A Simple GC–MS Method for the Screening of Betulinic, Corosolic, Maslinic, Oleanolic and Ursolic Acid Contents in Commercial Botanicals Used As Food Supplement Ingredients, Food Chemistry, Vol. 136, No. 2, 735–741. doi:10.1016/j.foodchem.2012.08.011.
- de Araujo, A. R., Quelemes, P. V., Perfeito, M. L. G., de Lima, L. I., Sá, M. C., Nunes, P. H. M., Joanitti, G. A., Eaton, P., Soares, M. J. dos S., and de Souza de Almeida Leite, J. R. (2015). Antibacterial, Antibiofilm and Cytotoxic Activities of Terminalia fagifolia Mart. Extract and Fractions, Annals of Clinical Microbiology and Antimicrobials, Vol. 14, No. 1, 25. doi:10.1186/s12941-015-0084-2.
- Ugurlu, A., Karahasan Yagci, A., Ulusoy, S., Aksu, B., and Bosgelmez-Tinaz, G. (2016). Phenolic Compounds Affect Production of Pyocyanin, Swarming Motility and Biofilm Formation of Pseudomonas aeruginosa, Asian Pacific Journal of Tropical Biomedicine, Vol. 6, No. 8, 698–701. doi:10.1016/j.apjtb.2016.06.008.
- Guzzo, F., Scognamiglio, M., Fiorentino, A., Buommino, E., and D’Abrosca, B. (2020). Plant Derived Natural Products against Pseudomonas aeruginosa and Staphylococcus aureus: Antibiofilm Activity and Molecular Mechanisms, Molecules, Vol. 25, No. 21, 5024. doi:10.3390/molecules25215024.
- Hao, S., Yang, D., Zhao, L., Shi, F., Ye, G., Fu, H., Lin, J., Guo, H., He, R., Li, J., Chen, H., Khan, M. F., Li, Y., and Tang, H. (2021). EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa, International Journal of Molecular Sciences, Vol. 22, No. 9, 4946. doi:10.3390/ijms22094946.
- Sycz, Z., Tichaczek-Goska, D., and Wojnicz, D. (2022). Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes—Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals, Biomolecules, Vol. 12, No. 1, 98. doi:10.3390/biom12010098.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Suryawati Suryawati, Rinaldi Idroes, Triana Hertiani, Khairan Khairan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.