Appraisal of Antioxidant Potential in Broccoli Microgreens under Different Drying Techniques Utilizing In Vitro and in Silico Methods

Authors

  • Trina Ekawati Tallei Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia; Department of Biology, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
  • Herlina Ineke Surjane Wungouw Department of Physiology, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
  • Billy Johnson Kepel Department of Chemistry, Faculty of Medicine, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
  • Fatimawali Fatimawali Pharmacy Study Program, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
  • Ismail Celik Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
  • Nurdjannah Jane Niode Department of Dermatology and Venereology, Faculty of Medicine, Sam Ratulangi University, Prof. Dr. R. D. Kandou Central General Hospital, Manado 95115, North Sulawesi, Indonesia
  • Jayanthi Barasarathi Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800 Nilai, Negeri Sembilan, Malaysia

DOI:

https://doi.org/10.60084/mp.v3i1.259

Keywords:

Bioactive compounds, Protein CYP2C9, Methyl myristate, Molecular docking, Molecular dynamics simulations

Abstract

Broccoli microgreens, rich in bioactive compounds, offer health benefits aligned with SDG 3: “Good Health and Well-Being.” Their antioxidants combat oxidative stress tied to chronic diseases, but drying can affect their activity. This study assessed the antioxidant capacities of fresh, microwave-dried, and air-fryer-dried broccoli microgreens using in vitro (DPPH assay) and in silico (molecular docking and dynamics) methods. The microgreens were cultivated under controlled conditions and dried using microwave and air-fryer techniques. Antioxidant activity was evaluated using the DPPH assay using ethanolic extracts. The bioactive compounds of fresh microgreens, detected through GC-MS, were analyzed in silico to evaluate their interactions with the target proteins CYP2C9 and NOX2. The findings revealed that air-fryer-dried microgreens demonstrated the highest DPPH activity, followed by fresh microgreens, while microwave-dried samples exhibited the lowest activity. GC-MS analysis of fresh samples revealed the presence of various compounds, including acids, ketones, sulfides, heterocycles, alcohols, esters, aromatic compounds, phthalate ester, and aldehydes. Molecular docking revealed strong interactions of certain compounds in fresh samples and CYP2C9 and NOX2, suggesting therapeutic potential against oxidative stress. Molecular dynamics simulations (MDS) showed stable binding for the CYP2C9-Methyl myristate complex, while the NOX-(Z)-1,2-Diphenylethene complex displayed weaker stability. In conclusion, broccoli microgreens show potential in mitigating oxidative stress, with air-fryer drying slightly enhancing their antioxidant activity. The antioxidant capacity of fresh microgreens is comparable to that of air-fryer-dried microgreens. In silico analyses demonstrate stable interactions between compounds in fresh microgreens and key proteins implicated in oxidative stress.

Downloads

Download data is not yet available.

References

  1. Singarimbun, E., Elfrida, E., and Indriaty, I. (2024). Indigenous Knowledge and Herbal Medicine: Exploring the Ethnobotany of the Karo Tiganderket Tribe in Indonesia, Heca Journal of Applied Sciences, Vol. 2, No. 2, 74–86. doi:10.60084/hjas.v2i2.208.
  2. Ratte, T. A., Fatimawali, F., Tallei, T. E., Suoth, E. J., Antasionasti, I., and Yamlean, P. (2023). Evaluation of Antibacterial Properties from Endophytic Fungi of Chrysanthemum indicum (L.) Flowers against Escherichia coli and Staphylococcus aureus, Grimsa Journal of Science Engineering and Technology, Vol. 1, No. 2, 71–77. doi:10.61975/gjset.v1i2.15.
  3. Le, T. N., Chiu, C.-H., and Hsieh, P.-C. (2020). Bioactive Compounds and Bioactivities of Brassica oleracea L. var. Italica Sprouts and Microgreens: An Updated Overview from a Nutraceutical Perspective., Plants (Basel, Switzerland), Vol. 9, No. 8. doi:10.3390/plants9080946.
  4. Dereje, B., Jacquier, J.-C., Elliott-Kingston, C., Harty, M., and Harbourne, N. (2023). Brassicaceae Microgreens: Phytochemical Compositions, Influences of Growing Practices, Postharvest Technology, Health, and Food Applications, ACS Food Science & Technology, Vol. 3, No. 6, 981–998. doi:10.1021/acsfoodscitech.3c00040.
  5. Alloggia, F. P., Bafumo, R. F., Ramirez, D. A., Maza, M. A., and Camargo, A. B. (2023). Brassicaceae Microgreens: A Novel and Promissory Source of Sustainable Bioactive Compounds, Current Research in Food Science, Vol. 6, 100480. doi:https://doi.org/10.1016/j.crfs.2023.100480.
  6. Ramirez, D., Abellán-Victorio, A., Beretta, V., Camargo, A., and Moreno, D. A. (2020). Functional Ingredients From Brassicaceae Species: Overview and Perspectives, International Journal of Molecular Sciences, Vol. 21, No. 6. doi:10.3390/ijms21061998.
  7. Ebert, A. W. (2022). Sprouts and Microgreens-Novel Food Sources for Healthy Diets., Plants (Basel, Switzerland), Vol. 11, No. 4. doi:10.3390/plants11040571.
  8. Fuente, B. de la, López-García, G., Máñez, V., Alegría, A., Barberá, R., and Cilla, A. (2020). Antiproliferative Effect of Bioaccessible Fractions of Four Brassicaceae Microgreens on Human Colon Cancer Cells Linked to Their Phytochemical Composition., Antioxidants (Basel, Switzerland), Vol. 9, No. 5. doi:10.3390/antiox9050368.
  9. Rudrapal, M., Khairnar, S. J., Khan, J., Dukhyil, A. Bin, Ansari, M. A., Alomary, M. N., Alshabrmi, F. M., Palai, S., Deb, P. K., and Devi, R. (2022). Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action, Frontiers in Pharmacology, Vol. 13. doi:10.3389/fphar.2022.806470.
  10. Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. El, Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C., and Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases, Frontiers in Physiology, Vol. 11. doi:10.3389/fphys.2020.00694.
  11. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., and Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health., Oxidative Medicine and Cellular Longevity, Vol. 2017, 8416763. doi:10.1155/2017/8416763.
  12. Arfin, S., Jha, N. K., Jha, S. K., Kesari, K. K., Ruokolainen, J., Roychoudhury, S., Rathi, B., and Kumar, D. (2021). Oxidative Stress in Cancer Cell Metabolism., Antioxidants (Basel, Switzerland), Vol. 10, No. 5. doi:10.3390/antiox10050642.
  13. Shahid, M., Fazry, S., Azfaralariff, A., Najm, A. A. K., Law, D., and Mackeen, M. M. (2023). Bioactive Compound Identification and In Vitro Evaluation of Antidiabetic and Cytotoxic Potential of Garcinia atroviridis Fruit Extract, Food Bioscience, Vol. 51, 102285. doi:https://doi.org/10.1016/j.fbio.2022.102285.
  14. Shahid, M., Law, D., Azfaralariff, A., Mackeen, M. M., Chong, T. F., and Fazry, S. (2022). Phytochemicals and Biological Activities of Garcinia atroviridis: A Critical Review, Toxics, Vol. 10, No. 11. doi:10.3390/toxics10110656.
  15. ElGamal, R., Song, C., Rayan, A. M., Liu, C., Al-Rejaie, S., and ElMasry, G. (2023). Thermal Degradation of Bioactive Compounds during Drying Process of Horticultural and Agronomic Products: A Comprehensive Overview, Agronomy, Vol. 13, No. 6. doi:10.3390/agronomy13061580.
  16. Dhara, J., Saha, S. K., Saha, M., and Chakraborty, R. (2023). Study on Drying Kinetics, Antioxidant Activity, Total Bioactive Compounds, Physicochemical Properties and Microstructural Characteristics of Dehydrated Star Fruits (Averrhoa carambola) by Different Drying Methods, Sustainable Food Technology, Vol. 2023.
  17. Tallei, T. E., Savitri, M., Lee, D., Rampengan, DerrenD. C. H., Park, M. N., Syahputra, R. A., Taslim, N. A., Moon, S., Nurkolis, F., and Kim, B. (2024). A Comparative Analysis on Impact of Drying Methods on Metabolite Composition in Broccoli Microgreens, LWT, Vol. 210, 116866. doi:https://doi.org/10.1016/j.lwt.2024.116866.
  18. Olugbami, J. O., Gbadegesin, M. A., and Odunola, O. A. (2014). In Vitro Evaluation of the Antioxidant Potential, Phenolic and Flavonoid Contents of the Stem Bark Ethanol Extract of Anogeissus Leiocarpus., African Journal of Medicine and Medical Sciences, Vol. 43, No. Suppl 1, 101–109.
  19. Goutzourelas, N., Kevrekidis, D. P., Barda, S., Malea, P., Trachana, V., Savvidi, S., Kevrekidou, A., Assimopoulou, A. N., Goutas, A., Liu, M., Lin, X., Kollatos, N., Amoutzias, G. D., and Stagos, D. (2023). Antioxidant Activity and Inhibition of Liver Cancer Cells’ Growth of Extracts from 14 Marine Macroalgae Species of the Mediterranean Sea, Foods, Vol. 12, No. 6. doi:10.3390/foods12061310.
  20. Tumilaar, S. G., Fatimawali, F., Niode, N. J., Effendi, Y., Idroes, R., Adam, A. A., Rakib, A., Emran, T. Bin, and Tallei, T. E. (2020). The Potential of Leaf Extract of Pangium edule Reinw As HIV-1 Protease Inhibitor: A Computational Biology Approach, Journal of Applied Pharmaceutical Science. doi:10.7324/JAPS.2021.110112.
  21. McNutt, A. T., Francoeur, P., Aggarwal, R., Masuda, T., Meli, R., Ragoza, M., Sunseri, J., and Koes, D. R. (2021). GNINA 1.0: Molecular Docking with Deep Learning., Journal of Cheminformatics, Vol. 13, No. 1, 43. doi:10.1186/s13321-021-00522-2.
  22. Tallei, T. E., Fatimawali, Adam, A. A., Ekatanti, D., Celik, I., Fatriani, R., Nainu, F., Kusuma, W. A., Rabaan, A. A., and Idroes, R. (2023). Molecular Insights into the Anti-Inflammatory Activity of Fermented Pineapple Juice Using Multimodal Computational Studies, Archiv Der Pharmazie, No. August. doi:10.1002/ardp.202300422.
  23. Celik, I., Khan, A., Dwivany, F. M., Fatimawali, Wei, D.-Q., and Tallei, T. E. (2022). Computational Prediction of the Effect of Mutations in the Receptor-Binding Domain on the Interaction between SARS-CoV-2 and Human ACE2, Molecular Diversity, Vol. 26, No. 6, 3309–3324. doi:10.1007/s11030-022-10392-x.
  24. Celik, I., Yadav, R., Duzgun, Z., Albogami, S., El-Shehawi, A. M., Fatimawali, Idroes, R., Tallei, T. E., and Emran, T. Bin. (2021). Interactions of the Receptor Binding Domain of SARS-CoV-2 Variants with hACE2: Insights from Molecular Docking Analysis and Molecular Dynamic Simulation, Biology, Vol. 10, No. 9. doi:10.3390/biology10090880.
  25. Parrinello, M., and Rahman, A. (1981). Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method, Journal of Applied Physics, Vol. 52(12), No. 12, 7182–7190. doi:10.1063/1.328693.
  26. Nosé, S., and Klein, M. L. (1983). Constant Pressure Molecular Dynamics for Molecular Systems, Molecular Physics, Vol. 50, No. 5, 1055–1076. doi:10.1080/00268978300102851.
  27. Nandasiri, R., Semenko, B., Wijekoon, C., and Suh, M. (2023). Air-Frying Is a Better Thermal Processing Choice for Improving Antioxidant Properties of Brassica Vegetables, Antioxidants, Vol. 12, No. 2. doi:10.3390/antiox12020490.
  28. Maqbool, N., Sofi, S. A., Makroo, H. A., Mir, S. A., Majid, D., and Dar, B. N. (2021). Cooking Methods Affect Eating Quality, Bio-Functional Components, Antinutritional Compounds and Sensory Attributes of Selected Vegetables, Italian Journal of Food Science, Vol. 3, No. SP1, 150–162.
  29. Fadairo, O. S., Nandasiri, R., Nguyen, T., Eskin, N. A. M., Aluko, R. E., and Scanlon, M. G. (2022). Improved Extraction Efficiency and Antioxidant Activity of Defatted Canola Meal Extract Phenolic Compounds Obtained from Air-Fried Seeds, Antioxidants, Vol. 11, No. 12. doi:10.3390/antiox11122411.
  30. Fadairo, O., Nandasiri, R., Alashi, A. M., Eskin, N. A. M., and Thiyam-Höllander, U. (2021). Air Frying Pretreatment and the Recovery of Lipophilic Sinapates from the Oil Fraction of Mustard Samples., Journal of Food Science, Vol. 86, No. 9, 3810–3823. doi:10.1111/1750-3841.15861.
  31. Wojdyło, A., Nowicka, P., Tkacz, K., and Turkiewicz, I. P. (2020). Sprouts vs. Microgreens as Novel Functional Foods: Variation of Nutritional and Phytochemical Profiles and Their In Vitro Bioactive Properties., Molecules (Basel, Switzerland), Vol. 25, No. 20. doi:10.3390/molecules25204648.
  32. Edo, G. I. (2022). Antibacterial, Phytochemical and GC-MS Analysis of Thevetia peruviana Extracts: An Approach in Drug Formulation, Natural Resources for Human Health, Vol. 2, No. 4, 418–426. doi:10.53365/nrfhh/146543.
  33. Petronzi, C., Festa, M., Peduto, A., Castellano, M., Marinello, J., Massa, A., Capasso, A., Capranico, G., La Gatta, A., De Rosa, M., Caraglia, M., and Filosa, R. (2013). Cyclohexa-2,5-Diene-1,4-Dione-Based Antiproliferative Agents: Design, Synthesis, and Cytotoxic Evaluation, Journal of Experimental & Clinical Cancer Research, Vol. 32, No. 1, 24. doi:10.1186/1756-9966-32-24.
  34. Rezanka, T., Kolouchová, I., Cejková, A., and Sigler, K. (2012). Biosynthesis and Metabolic Pathways of Pivalic Acid., Applied Microbiology and Biotechnology, Vol. 95, No. 6, 1371–1376. doi:10.1007/s00253-012-4267-x.
  35. Cheynier, V. (2012). Phenolic Compounds: From Plants to Foods, Phytochemistry Reviews, Vol. 11, No. 2, 153–177. doi:10.1007/s11101-012-9242-8.
  36. Crozier, A., Jaganath, I. B., and Clifford, M. N. (2006). Phenols, Polyphenols and Tannins: An Overview, Plant Secondary Metabolites, John Wiley & Sons, Ltd, 1–24. doi:https://doi.org/10.1002/9780470988558.ch1.
  37. Salehi, B., Mishra, A. P., Nigam, M., Sener, B., Kilic, M., Sharifi-Rad, M., Fokou, P. V. T., Martins, N., and Sharifi-Rad, J. (2018). Resveratrol: A Double-Edged Sword in Health Benefits., Biomedicines, Vol. 6, No. 3. doi:10.3390/biomedicines6030091.
  38. Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D., and Borderie, D. (2012). Antioxidant Effects of Resveratrol and Other Stilbene Derivatives on Oxidative Stress and *NO Bioavailability: Potential Benefits to Cardiovascular Diseases., Biochimie, Vol. 94, No. 2, 269–276. doi:10.1016/j.biochi.2011.11.001.
  39. Pinto, M. E. A., Araújo, S. G., Morais, M. I., Sá, N. P., Lima, C. M., Rosa, C. A., Siqueira, E. P., Johann, S., and Lima, L. A. R. S. (2017). Antifungal and Antioxidant Activity of Fatty Acid Methyl Esters from Vegetable Oils., Anais Da Academia Brasileira de Ciencias, Vol. 89, No. 3, 1671–1681. doi:10.1590/0001-3765201720160908.
  40. Davoodbasha, M., Edachery, B., Nooruddin, T., Lee, S.-Y., and Kim, J.-W. (2018). An Evidence of C16 Fatty Acid Methyl Esters Extracted from Microalga for Effective Antimicrobial and Antioxidant Property., Microbial Pathogenesis, Vol. 115, 233–238. doi:10.1016/j.micpath.2017.12.049.
  41. Morris, S. G., Kraekel, L. A., Hammer, D., Myers, J. S., and Riemenschneider, R. W. (1947). Antioxidant Properties of the Fatty Alcohol Esters of Gallic Acid, Journal of the American Oil Chemists Society, Vol. 24, No. 9, 309–311. doi:10.1007/BF02641952.
  42. Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., and Liu, S.-Q. (2016). Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods., International Journal of Molecular Sciences, Vol. 17, No. 2. doi:10.3390/ijms17020144.
  43. Mittal, B., Tulsyan, S., Kumar, S., Mittal, R. D., and Agarwal, G. (2015). Chapter Four - Cytochrome P450 in Cancer Susceptibility and Treatment, Advances in Clinical Chemistry, Vol. 71, 77–139. doi:10.1016/bs.acc.2015.06.003.
  44. Vignais, P. V. (2002). The Superoxide-Generating NADPH Oxidase: Structural Aspects and Activation Mechanism., Cellular and Molecular Life Sciences : CMLS, Vol. 59, No. 9, 1428–1459. doi:10.1007/s00018-002-8520-9.
  45. Vermot, A., Petit-Härtlein, I., Smith, S. M. E., and Fieschi, F. (2021). NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology., Antioxidants (Basel, Switzerland), Vol. 10, No. 6. doi:10.3390/antiox10060890.
  46. Herschlag, D., and Pinney, M. M. (2018). Hydrogen Bonds: Simple After All?, Biochemistry, Vol. 57, No. 24, 3338–3352. doi:10.1021/acs.biochem.8b00217.
  47. Tallei, T. E., Tumilaar, S. G., Niode, N. J., Fatimawali, Kepel, B. J., Idroes, R., Effendi, Y., Sakib, S. A., and Emran, T. Bin. (2020). Potential of Plant Bioactive Compounds as SARS-CoV-2 Main Protease (Mpro) and Spike (S) Glycoprotein Inhibitors: A Molecular Docking Study, Scientifica, Vol. 2020, 1–18. doi:10.1155/2020/6307457.
  48. Tallei, T. E., Fatimawali, Yelnetty, A., Idroes, R., Kusumawaty, D., Emran, T. Bin, Yesiloglu, T. Z., Sippl, W., Mahmud, S., Alqahtani, T., Alqahtani, A. M., Asiri, S., Rahmatullah, M., Jahan, R., Khan, M. A., and Celik, I. (2021). An Analysis Based on Molecular Docking and Molecular Dynamics Simulation Study of Bromelain as Anti-SARS-CoV-2 Variants, Frontiers in Pharmacology, Vol. 12, No. August, 1–18. doi:10.3389/fphar.2021.717757.
  49. Hubbard, R. E., and Kamran Haider, M. (2010). Hydrogen Bonds in Proteins: Role and Strength, Encyclopedia of Life Sciences. doi:10.1002/9780470015902.a0003011.pub2.
  50. Celik, I., Abdellattif, M. H., and Tallei, T. E. (2022). An Insight Based on Computational Analysis of the Interaction between the Receptor-Binding Domain of the Omicron Variants and Human Angiotensin-Converting Enzyme 2., Biology, Vol. 11, No. 5. doi:10.3390/biology11050797.
  51. Shah R, T., and Misra, A. (2011). Proteomics. Challenges in Delivery of Therapeutic Genomics and Proteomics, Gujarat, 686.
  52. Arwansyah, A., Ambarsari, L., and Sumaryada, T. I. (2014). Simulasi Docking Senyawa Kurkumin dan Analognya Sebagai Inhibitor Reseptor Androgen pada Kanker Prostat, Current Biochemistry, Vol. 1, No. 1, 11–19. doi:10.29244/cb.1.1.11-19.
  53. Rudnev, V. R., Nikolsky, K. S., Petrovsky, D. V, Kulikova, L. I., Kargatov, A. M., Malsagova, K. A., Stepanov, A. A., Kopylov, A. T., Kaysheva, A. L., and Efimov, A. V. (2022). 3β-Corner Stability by Comparative Molecular Dynamics Simulations, International Journal of Molecular Sciences, Vol. 23, No. 19. doi:10.3390/ijms231911674.

Downloads

Published

2025-01-17

How to Cite

Tallei, T. E., Wungouw, H. I. S., Kepel, B. J., Fatimawali, F., Celik, I., Niode, N. J., & Barasarathi , J. (2025). Appraisal of Antioxidant Potential in Broccoli Microgreens under Different Drying Techniques Utilizing In Vitro and in Silico Methods . Malacca Pharmaceutics, 3(1), 20–31. https://doi.org/10.60084/mp.v3i1.259

Issue

Section

Article