Evaluation of Machine Learning Methods for Identifying Carbonic Anhydrase-II Inhibitors as Drug Candidates for Glaucoma

Authors

  • Teuku Rizky Noviandy Department of Information Systems, Faculty of Engineering, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Eva Imelda Department of Ophthalmology, General Hospital Dr. Zainoel Abidin, Banda Aceh 23126, Indonesia; Department of Ophthalmology, Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia
  • Ghazi Mauer Idroes Department of Occupational Health and Safety, Faculty of Health Sciences, Universitas Abulyatama, Aceh Besar 23372, Indonesia
  • Rivansyah Suhendra Department of Information Technology, Faculty of Engineering, Universitas Teuku Umar, Aceh Barat 23681, Indonesia
  • Rinaldi Idroes School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia

DOI:

https://doi.org/10.60084/mp.v3i1.271

Keywords:

CA-II inhibitors, Virtual screening, Glaucoma drug discovery, Artificial intelligence

Abstract

Glaucoma is a leading cause of irreversible blindness, primarily managed by lowering intraocular pressure (IOP). Carbonic Anhydrase-II (CA-II) inhibitors play a crucial role in this treatment by reducing aqueous humor production. However, existing CA-II inhibitors often suffer from poor selectivity, side effects, and limited bioavailability, highlighting the need for more efficient and targeted drug discovery approaches. This study uses machine learning-driven Quantitative Structure-Activity Relationship (QSAR) modeling to predict CA-II inhibition based on molecular descriptors, significantly enhancing screening efficiency over traditional experimental methods. By evaluating multiple machine learning models, including Support Vector Machine, Gradient Boosting, and Random Forest, we identify SVM as the most effective classifier, achieving the highest accuracy (83.70%) and F1-score (89.36%). Class imbalance remains challenging despite high sensitivity, necessitating further improvements through resampling and hyperparameter optimization. Our findings underscore the potential of machine learning-based virtual screening in accelerating CA-II inhibitor identification and advocate for integrating AI-driven approaches with traditional drug discovery techniques. Future directions include deep learning enhancements and hybrid machine learning-docking frameworks to improve prediction accuracy and facilitate the development of more potent and selective glaucoma treatments.

Downloads

Download data is not yet available.

References

  1. Artero-Castro, A., Rodriguez-Jimenez, F. J., Jendelova, P., VanderWall, K. B., Meyer, J. S., and Erceg, S. (2020). Glaucoma as a Neurodegenerative Disease Caused by Intrinsic Vulnerability Factors, Progress in Neurobiology, Vol. 193, 101817. doi:10.1016/j.pneurobio.2020.101817.
  2. García-Llorca, A., Carta, F., Supuran, C. T., and Eysteinsson, T. (2024). Carbonic Anhydrase, Its Inhibitors and Vascular Function, Frontiers in Molecular Biosciences, Vol. 11. doi:10.3389/fmolb.2024.1338528.
  3. Supuran, C. T., Altamimi, A. S. A., and Carta, F. (2019). Carbonic Anhydrase Inhibition and the Management of Glaucoma: A Literature and Patent Review 2013–2019, Expert Opinion on Therapeutic Patents, Vol. 29, No. 10, 781–792. doi:10.1080/13543776.2019.1679117.
  4. Mincione, F., Nocentini, A., and Supuran, C. T. (2021). Advances in the Discovery of Novel Agents for the Treatment of Glaucoma, Expert Opinion on Drug Discovery, Vol. 16, No. 10, 1209–1225. doi:10.1080/17460441.2021.1922384.
  5. Supuran, C. T. (2021). Emerging Role of Carbonic Anhydrase Inhibitors, Clinical Science, Vol. 135, No. 10, 1233–1249. doi:10.1042/CS20210040.
  6. Kumar, S., Rulhania, S., Jaswal, S., and Monga, V. (2021). Recent Advances in the Medicinal Chemistry of Carbonic Anhydrase Inhibitors, European Journal of Medicinal Chemistry, Vol. 209, 112923. doi:10.1016/j.ejmech.2020.112923.
  7. Tiwari, P. C., Pal, R., Chaudhary, M. J., and Nath, R. (2023). Artificial Intelligence Revolutionizing Drug Development: Exploring Opportunities and Challenges, Drug Development Research, Vol. 84, No. 8, 1652–1663. doi:10.1002/ddr.22115.
  8. Sadybekov, A. V., and Katritch, V. (2023). Computational Approaches Streamlining Drug Discovery, Nature, Vol. 616, No. 7958, 673–685. doi:10.1038/s41586-023-05905-z.
  9. Staszak, M., Staszak, K., Wieszczycka, K., Bajek, A., Roszkowski, K., and Tylkowski, B. (2022). Machine Learning in Drug Design: Use of Artificial Intelligence to Explore the Chemical Structure–Biological Activity Relationship, WIREs Computational Molecular Science, Vol. 12, No. 2. doi:10.1002/wcms.1568.
  10. Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M., and Ahsan, M. J. (2022). Machine Learning in Drug Discovery: A Review, Artificial Intelligence Review, Vol. 55, No. 3, 1947–1999. doi:10.1007/s10462-021-10058-4.
  11. Noviandy, T. R., Maulana, A., Idroes, G. M., Emran, T. B., Tallei, T. E., Helwani, Z., and Idroes, R. (2023). Ensemble Machine Learning Approach for Quantitative Structure Activity Relationship Based Drug Discovery: A Review, Infolitika Journal of Data Science, Vol. 1, No. 1, 32–41. doi:10.60084/ijds.v1i1.91.
  12. Dhudum, R., Ganeshpurkar, A., and Pawar, A. (2024). Revolutionizing Drug Discovery: A Comprehensive Review of AI Applications, Drugs and Drug Candidates, Vol. 3, No. 1, 148–171. doi:10.3390/ddc3010009.
  13. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). An Interpretable Machine Learning Strategy for Antimalarial Drug Discovery with LightGBM and SHAP, Journal of Future Artificial Intelligence and Technologies, Vol. 1, No. 2, 84–95. doi:10.62411/faith.2024-16.
  14. Sinsulpsiri, S., Nishii, Y., Xu-Xu, Q.-F., Miura, M., Wilasluck, P., Salamteh, K., Deetanya, P., Wangkanont, K., Suroengrit, A., Boonyasuppayakorn, S., Duan, L., Harada, R., Hengphasatporn, K., Shigeta, Y., Shi, L., Maitarad, P., and Rungrotmongkol, T. (2025). Unveiling the Antiviral Inhibitory Activity of Ebselen and Ebsulfur Derivatives on SARS-CoV-2 Using Machine Learning-Based QSAR, LB-PaCS-MD, and Experimental Assay, Scientific Reports, Vol. 15, No. 1, 6956. doi:10.1038/s41598-025-91235-1.
  15. Priya, S., Tripathi, G., Singh, D. B., Jain, P., and Kumar, A. (2022). Machine Learning Approaches and Their Applications in Drug Discovery and Design, Chemical Biology & Drug Design, Vol. 100, No. 1, 136–153. doi:10.1111/cbdd.14057.
  16. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Machine Learning Approach to Predict AXL Kinase Inhibitor Activity for Cancer Drug Discovery Using XGBoost and Bayesian Optimization, Journal of Soft Computing and Data Mining, Vol. 5, No. 1, 46–56.
  17. El Rhabori, S., Alaqarbeh, M., El Allouche, Y., Naanaai, L., El Aissouq, A., Bouachrine, M., Chtita, S., and Khalil, F. (2025). Exploring Innovative Strategies for Identifying Anti-Breast Cancer Compounds by Integrating 2D/3D-QSAR, Molecular Docking Analyses, ADMET Predictions, Molecular Dynamics Simulations, and MM-PBSA Approaches, Journal of Molecular Structure, Vol. 1320, 139500. doi:10.1016/j.molstruc.2024.139500.
  18. Khan, S., Sarfraz, A., Prakash, O., and Khan, F. (2024). Machine Learning-Based QSAR Modeling, Molecular Docking, Dynamics Simulation Studies for Cytotoxicity Prediction in MDA-MB231 Triple-Negative Breast Cancer Cell Line, Journal of Molecular Structure, Vol. 1315, 138807. doi:10.1016/j.molstruc.2024.138807.
  19. Noviandy, T. R., Maulana, A., Idroes, G. M., Suhendra, R., Afidh, R. P. F., and Idroes, R. (2024). An Explainable Multi-Model Stacked Classifier Approach for Predicting Hepatitis C Drug Candidates, Sci, Vol. 6, No. 4, 81. doi:10.3390/sci6040081.
  20. Noviandy, T. R., Idroes, G. M., Maulana, A., Afidh, R. P. F., and Idroes, R. (2024). Optimizing Hepatitis C Virus Inhibitor Identification with LightGBM and Tree-structured Parzen Estimator Sampling, Engineering, Technology & Applied Science Research, Vol. 14, No. 6, 18810–18817. doi:10.48084/etasr.8947.
  21. Winkler, D. A. (2022). The Impact of Machine Learning on Future Tuberculosis Drug Discovery, Expert Opinion on Drug Discovery, Vol. 17, No. 9, 925–927. doi:10.1080/17460441.2022.2108785.
  22. Noviandy, T. R., Maulana, A., Irvanizam, I., Idroes, G. M., Maulydia, N. B., Tallei, T. E., Subianto, M., and Idroes, R. (2025). Interpretable Machine Learning Approach to Predict Hepatitis C Virus NS5B Inhibitor Activity Using Voting-Based LightGBM and SHAP, Intelligent Systems with Applications, Vol. 25, 200481. doi:10.1016/j.iswa.2025.200481.
  23. Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A., Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., and Overington, J. P. (2012). ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery, Nucleic Acids Research, Vol. 40, No. D1, D1100–D1107. doi:10.1093/nar/gkr777.
  24. Noviandy, T. R., Maulana, A., Emran, T. B., Idroes, G. M., and Idroes, R. (2023). QSAR Classification of Beta-Secretase 1 Inhibitor Activity in Alzheimer’s Disease Using Ensemble Machine Learning Algorithms, Heca Journal of Applied Sciences, Vol. 1, No. 1, 1–7. doi:10.60084/hjas.v1i1.12.
  25. Rudrapal, M., Kirboga, K. K., Abdalla, M., and Maji, S. (2024). Explainable Artificial Intelligence-Assisted Virtual Screening and Bioinformatics Approaches for Effective Bioactivity Prediction of Phenolic Cyclooxygenase-2 (COX-2) Inhibitors Using PubChem Molecular Fingerprints, Molecular Diversity, Vol. 28, No. 4, 2099–2118. doi:10.1007/s11030-023-10782-9.
  26. Ojha, P. K., and Roy, K. (2011). Comparative QSARs for Antimalarial Endochins: Importance of Descriptor-Thinning and Noise Reduction Prior to Feature Selection, Chemometrics and Intelligent Laboratory Systems, Vol. 109, No. 2, 146–161. doi:10.1016/j.chemolab.2011.08.007.
  27. Westad, F., and Marini, F. (2022). Variable Selection and Redundancy in Multivariate Regression Models, Frontiers in Analytical Science, Vol. 2. doi:10.3389/frans.2022.897605.
  28. Robotti, E., and Marengo, E. (2016). Chemometric Multivariate Tools for Candidate Biomarker Identification : LDA, PLS-DA, SIMCA, Ranking-PCA, Methods in Molecular Biology (Vol. 1384), Humana Press. doi:10.1007/978-1-4939-3255-9.
  29. Chen, X., Li, H., Tian, L., Li, Q., Luo, J., and Zhang, Y. (2020). Analysis of the Physicochemical Properties of Acaricides Based on Lipinski’s Rule of Five, Journal of Computational Biology, Vol. 27, No. 9, 1397–1406. doi:10.1089/cmb.2019.0323.
  30. Yu, T., Huang, T., Yu, L., Nantasenamat, C., Anuwongcharoen, N., Piacham, T., Ren, R., and Chiang, Y.-C. (2023). Exploring the Chemical Space of CYP17A1 Inhibitors Using Cheminformatics and Machine Learning, Molecules, Vol. 28, No. 4, 1679. doi:10.3390/molecules28041679.
  31. Bai, Q., Su, C., Tang, W., and Li, Y. (2022). Machine Learning to Predict End Stage Kidney Disease in Chronic Kidney Disease, Scientific Reports, Vol. 12, No. 1, 8377. doi:10.1038/s41598-022-12316-z.
  32. Noviandy, T. R., Idroes, G. M., and Hardi, I. (2024). Enhancing Loan Approval Decision-Making: An Interpretable Machine Learning Approach Using LightGBM for Digital Economy Development, Malaysian Journal of Computing (MJOC), Vol. 9, No. 1, 1734–1745. doi:10.24191/mjoc.v9i1.25691.33. El Orche, A., Mamad, A., Elhamdaoui, O., Cheikh, A., El Karbane, M., and Bouatia, M. (2021). Comparison of Machine Learning Classification Methods for Determining the Geographical Origin of Raw Milk Using Vibrational Spectroscopy, Journal of Spectroscopy, Vol. 2021. doi:10.1155/2021/5845422.
  33. Suhendra, R., Suryadi, S., Husdayanti, N., Maulana, A., Noviandy, T. R., Sasmita, N. R., Subianto, M., Earlia, N., Niode, N. J., and Idroes, R. (2023). Evaluation of Gradient Boosted Classifier in Atopic Dermatitis Severity Score Classification, Heca Journal of Applied Sciences, Vol. 1, No. 2, 54–61. doi:10.60084/hjas.v1i2.85.
  34. Sasmita, N. R., Ramadeska, S., Kesuma, Z. M., Noviandy, T. R., Maulana, A., Khairul, M., and Suhendra, R. (2024). Decision Tree versus k-NN: A Performance Comparison for Air Quality Classification in Indonesia, Infolitika Journal of Data Science, Vol. 2, No. 1, 9–16. doi:10.60084/ijds.v2i1.179.
  35. Rafiei, H., Khanzadeh, M., Mozaffari, S., Bostanifar, M. H., Avval, Z. M., Aalizadeh, R., and Pourbasheer, E. (2016). QSAR Study of HCV NS5B Polymerase Inhibitors Using the Genetic Algorithm-Multiple Linear Regression (GA-MLR), EXCLI Journal, Vol. 15, 38–53. doi:10.17179/excli2015-731.
  36. Noviandy, T. R., Idroes, G. M., Mohd Fauzi, F., and Idroes, R. (2024). Application of Ensemble Machine Learning Methods for QSAR Classification of Leukotriene A4 Hydrolase Inhibitors in Drug Discovery, Malacca Pharmaceutics, Vol. 2, No. 2, 68–78. doi:10.60084/mp.v2i2.217.
  37. Noviandy, T. R., Nisa, K., Idroes, G. M., Hardi, I., and Sasmita, N. R. (2024). Classifying Beta-Secretase 1 Inhibitor Activity for Alzheimer’s Drug Discovery with LightGBM, Journal of Computing Theories and Applications, Vol. 2, No. 2, 138–147. doi:10.62411/jcta.10129.

Downloads

Published

2025-03-04

How to Cite

Noviandy, T. R., Imelda, E., Idroes, G. M., Suhendra, R., & Idroes, R. (2025). Evaluation of Machine Learning Methods for Identifying Carbonic Anhydrase-II Inhibitors as Drug Candidates for Glaucoma. Malacca Pharmaceutics, 3(1), 32–41. https://doi.org/10.60084/mp.v3i1.271

Issue

Section

Article